Last active
February 9, 2023 14:34
-
-
Save patil-suraj/ea4ddb77ce9a8908560c5032dd1fc238 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.utils.benchmark as benchmark | |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler | |
from diffusers.models.cross_attention import TorchAttentionProcessor | |
def benchmark_torch_function(f, *args, **kwargs): | |
t0 = benchmark.Timer( | |
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f} | |
) | |
return round(t0.blocked_autorange(min_run_time=1).mean, 2) | |
# benchmark code | |
model_id = "CompVis/stable-diffusion-v1-4" | |
prompt = "A photo of an astronaut riding a horse on mars." | |
steps = 50 | |
batch_size = 10 | |
dtype = torch.float16 | |
# load model | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, safety_checker=None).to("cuda") | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.set_progress_bar_config(disable=True) | |
# Vanilla Cross Attention | |
print("Running benchmark for vanilla cross attention...") | |
f = lambda : pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images | |
time_vanilla = benchmark_torch_function(f) | |
# PyTorch sdpa | |
print("Running benchmark for PyTorch SDPA...") | |
pipe.unet.set_attn_processor(TorchAttentionProcessor()) | |
f = lambda : pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images | |
time_sdpa = benchmark_torch_function(f) | |
# PyTorch sdpa with torch.compile | |
print("Running benchmark for PyTorch SDPA with torch.compile...") | |
pipe.unet = torch.compile(pipe.unet) | |
# warmup | |
pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images | |
f = lambda : pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images | |
time_sdpa_torch_compile = benchmark_torch_function(f) | |
# print results with nice formatting | |
print(f"Model: {model_id}, dtype: {dtype}, steps: {steps}, batch_size: {batch_size}") | |
print(f"Vanilla Cross Attention: {time_vanilla} s") | |
print(f"PyTorch SDPA: {time_sdpa} s") | |
print(f"PyTorch SDPA with torch.compile: {time_sdpa_torch_compile} s") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment