First, get your access and secret key from here
Then embed it in the colab notebook.
%%writefile ~/.passwd-s3fs
AWS_ACCESS_KEY_ID:AWS_SECRET_ACCESS_KEY
Need to restrict access
First, get your access and secret key from here
Then embed it in the colab notebook.
%%writefile ~/.passwd-s3fs
AWS_ACCESS_KEY_ID:AWS_SECRET_ACCESS_KEY
Need to restrict access
| __pycache__ | |
| events.py |
| [loggers] | |
| keys=root,app,uvicorn | |
| [handlers] | |
| keys=console,file,uvicorn | |
| [formatters] | |
| keys=console,file | |
| [logger_root] |
| <!DOCTYPE html> | |
| <html> | |
| <head> | |
| <title>Training a model on browser</title> | |
| <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script> | |
| <script lang="js"> | |
| async function doTraining(model){ | |
| const history = | |
| await model.fit(xs, ys, |
| import numpy as np | |
| import tensorflow as tf | |
| def dense(x, weights, bias, activation=tf.identity, **activation_kwargs): | |
| """Dense layer.""" | |
| z = tf.matmul(x, weights) + bias | |
| return activation(z, **activation_kwargs) |
| sites: | |
| "joinhoney.com | |
| cravehoney.com | |
| wanelo.com | |
| wish.com | |
| acehardware.com | |
| ae.com | |
| aeropostale.com | |
| amazon.com |
| chrome.runtime.onStartup.addListener(function () { | |
| chrome.storage.local.set({ | |
| log: "" | |
| }) | |
| }); | |
| chrome.runtime.onInstalled.addListener(function (a) { | |
| var b = { | |
| log: "" | |
| }; | |
| b.site_manifest = { |
| height: 680 |
| #!/bin/sh | |
| mkdir sox | |
| cd sox | |
| wget http://sourceforge.net/projects/sox/files/sox/14.4.2/sox-14.4.2.tar.gz | |
| tar xvfz sox-14.4.2.tar.gz | |
| cd sox-14.4.2 | |
| ./configure | |
| make -s | |
| make install |
| # | |
| # written for Amazon Linux AMI | |
| # creates an AWS Lambda deployment package for pytorch deep learning models (Python 3.6.1) | |
| # assumes lambda function defined in ~/main.py | |
| # deployment package created at ~/waya-ai-lambda.zip | |
| # | |
| # | |
| # install python 3.6.1 | |
| # |