ssh-keygen -t ed25519 -C "[email protected]" -f ~/.ssh/id_rsa_github
ssh-keygen -t ed25519 -C "[email protected]" -f ~/.ssh/id_rsa_gitlab
Your company's GPU computing strategy is essential whether you engage in 3D visualization, machine learning, AI, or any other form of intensive computing.
There was a time when businesses had to wait for long periods of time while deep learning models were being trained and processed. Because it was time-consuming, costly, and created space and organization problems, it reduced their output.
This problem has been resolved in the most recent GPU designs. Because of their high parallel processing efficiency, they are well-suited for handling large calculations and speeding up the training of your AI models.
When it comes to deep learning, GPUs can speed up the training of neural networks by a factor of 250 compared to CPUs, and the latest generation of cloud GPUs is reshaping data science and other emerging technologies by delivering even greater performance at a lower cost and with the added benefits of easy scalability and rapid deployment.
def construct_firm_profile(self, query: str, search_results: List[Dict], schema: str = "llm_store"): | |
""" | |
Construct firm profile based on search results | |
""" | |
datapoint = { | |
"user_id": self.user_id, | |
"search_query": query, | |
"search_results": search_results, | |
"created_at": datetime.now().isoformat(), |
{"name":"ININ-Lab-Profile","settings":"{\"settings\":\"{\\n \\\"workbench.colorTheme\\\": \\\"One Dark Pro\\\",\\n \\\"workbench.iconTheme\\\": \\\"material-icon-theme\\\",\\n \\\"git.autofetch\\\": true\\n}\"}","extensions":"[{\"identifier\":{\"id\":\"github.copilot\",\"uuid\":\"23c4aeee-f844-43cd-b53e-1113e483f1a6\"},\"displayName\":\"GitHub Copilot\"},{\"identifier\":{\"id\":\"github.copilot-chat\",\"uuid\":\"7ec7d6e6-b89e-4cc5-a59b-d6c4d238246f\"},\"displayName\":\"GitHub Copilot Chat\"},{\"identifier\":{\"id\":\"mathematic.vscode-pdf\",\"uuid\":\"89a3757d-edad-4403-95f0-24b72cce805e\"},\"displayName\":\"PDF Viewer\"},{\"identifier\":{\"id\":\"ms-python.debugpy\",\"uuid\":\"4bd5d2c9-9d65-401a-b0b2-7498d9f17615\"},\"displayName\":\"Python Debugger\"},{\"identifier\":{\"id\":\"ms-python.python\",\"uuid\":\"f1f59ae4-9318-4f3c-a9b5-81b2eaa5f8a5\"},\"displayName\":\"Python\"},{\"identifier\":{\"id\":\"ms-python.vscode-pylance\",\"uuid\":\"364d2426-116a-433a-a5d8-a5098dc3afbd\"},\"displayName\":\"Pylan |
{"name":"ININ-Lab-Profile","settings":"{\"settings\":\"{\\n \\\"workbench.colorTheme\\\": \\\"One Dark Pro\\\",\\n \\\"workbench.iconTheme\\\": \\\"material-icon-theme\\\",\\n \\\"git.autofetch\\\": true\\n}\"}","extensions":"[{\"identifier\":{\"id\":\"github.copilot\",\"uuid\":\"23c4aeee-f844-43cd-b53e-1113e483f1a6\"},\"displayName\":\"GitHub Copilot\"},{\"identifier\":{\"id\":\"github.copilot-chat\",\"uuid\":\"7ec7d6e6-b89e-4cc5-a59b-d6c4d238246f\"},\"displayName\":\"GitHub Copilot Chat\"},{\"identifier\":{\"id\":\"ms-python.debugpy\",\"uuid\":\"4bd5d2c9-9d65-401a-b0b2-7498d9f17615\"},\"displayName\":\"Python Debugger\"},{\"identifier\":{\"id\":\"ms-python.python\",\"uuid\":\"f1f59ae4-9318-4f3c-a9b5-81b2eaa5f8a5\"},\"displayName\":\"Python\"},{\"identifier\":{\"id\":\"ms-python.vscode-pylance\",\"uuid\":\"364d2426-116a-433a-a5d8-a5098dc3afbd\"},\"displayName\":\"Pylance\"},{\"identifier\":{\"id\":\"ms-toolsai.jupyter\",\"uuid\":\"6c2f1801-1e7f-45b2-9b5c-7782f1e076e8\"},\"displayName\":\"Jupyter\"}, |
var Twitter = require('node-tweet-stream') | |
, t = new Twitter({ | |
consumer_key: '', | |
consumer_secret: '', | |
token: '', | |
token_secret: '' | |
}); | |
var watch = [ | |
"SB52", | |
"SBLII", |
A non-exhaustive list of WebGL and WebGPU frameworks and libraries. It is mostly for learning purposes as some of the libraries listed are wip/outdated/not maintained anymore.
Name | Stars | Last Commit | Description |
---|---|---|---|
three.js | ![GitHub Rep |
library(data.table) | |
?`[.data.table` | |
DT <- data.table(x=rep(c("b","a","c"),each=3), y=c(1,3,6), v=1:9) | |
X <- data.table(x=c("c","b"), v=8:7, foo=c(4,2)) | |
colnames(DT) | |
# [1] "x" "y" "v" |