Here's a comprehensive definition for Kafka events in an order management trading system with hash verification for message producers:
{
"eventType": "ORDER_CREATED",
"version": "1.0",
"timestamp": "2025-03-10T08:45:32.215Z",
"orderId": "ORD-12345678",
"producerId": "TRADING-SVC-01",
"payload": {
"clientId": "CLI-98765",
"symbol": "AAPL",
"quantity": 100,
"price": 225.75,
"side": "BUY",
"orderType": "LIMIT",
"timeInForce": "GTC",
"status": "PENDING"
},
"metadata": {
"correlationId": "a1b2c3d4-e5f6-7890-1234-567890abcdef",
"origin": "WEB_PLATFORM"
},
"hash": "63a9f0ea7bb98050796b649e85481845"
}
For an order management system, you might use the following topic structure:
trading.orders.created
trading.orders.updated
trading.orders.executed
trading.orders.canceled
trading.orders.rejected
Here's how to implement the hash verification in Java:
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import com.fasterxml.jackson.databind.ObjectMapper;
import java.security.MessageDigest;
import java.util.Properties;
public class OrderEventProducer {
private final KafkaProducer<String, String> producer;
private final ObjectMapper objectMapper;
private final String producerId;
public OrderEventProducer(String bootstrapServers, String producerId) {
Properties props = new Properties();
props.put("bootstrap.servers", bootstrapServers);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
this.producer = new KafkaProducer<>(props);
this.objectMapper = new ObjectMapper();
this.producerId = producerId;
}
public void sendOrderEvent(String topic, OrderEvent event) throws Exception {
// Set producer ID
event.setProducerId(this.producerId);
// Create a copy of the event without the hash field for hash calculation
OrderEvent eventForHashing = event.copyWithoutHash();
String eventJson = objectMapper.writeValueAsString(eventForHashing);
// Calculate MD5 hash
String hash = calculateMD5Hash(eventJson);
event.setHash(hash);
// Serialize the complete event
String completeEventJson = objectMapper.writeValueAsString(event);
// Send to Kafka
ProducerRecord<String, String> record = new ProducerRecord<>(
topic, event.getOrderId(), completeEventJson);
producer.send(record);
}
private String calculateMD5Hash(String input) throws Exception {
MessageDigest md = MessageDigest.getInstance("MD5");
byte[] hashBytes = md.digest(input.getBytes("UTF-8"));
StringBuilder hexString = new StringBuilder();
for (byte hashByte : hashBytes) {
String hex = Integer.toHexString(0xff & hashByte);
if (hex.length() == 1) hexString.append('0');
hexString.append(hex);
}
return hexString.toString();
}
public void close() {
producer.close();
}
}
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import com.fasterxml.jackson.databind.ObjectMapper;
import java.security.MessageDigest;
import java.util.Collections;
import java.util.Properties;
public class OrderEventConsumer {
private final KafkaConsumer<String, String> consumer;
private final ObjectMapper objectMapper;
public OrderEventConsumer(String bootstrapServers, String groupId) {
Properties props = new Properties();
props.put("bootstrap.servers", bootstrapServers);
props.put("group.id", groupId);
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
this.consumer = new KafkaConsumer<>(props);
this.objectMapper = new ObjectMapper();
}
public void subscribe(String topic) {
consumer.subscribe(Collections.singletonList(topic));
}
public void processEvents() {
while (true) {
var records = consumer.poll(java.time.Duration.ofMillis(100));
for (ConsumerRecord<String, String> record : records) {
try {
// Deserialize the event
OrderEvent event = objectMapper.readValue(record.value(), OrderEvent.class);
// Extract the hash
String receivedHash = event.getHash();
// Create a copy without the hash for verification
OrderEvent eventForVerification = event.copyWithoutHash();
String eventJson = objectMapper.writeValueAsString(eventForVerification);
// Calculate hash for verification
String calculatedHash = calculateMD5Hash(eventJson);
// Verify hash
if (receivedHash.equals(calculatedHash)) {
// Hash is valid, process the event
processValidEvent(event);
} else {
// Hash is invalid, handle the error
handleInvalidHash(event, receivedHash, calculatedHash);
}
} catch (Exception e) {
// Handle deserialization error
System.err.println("Error processing message: " + e.getMessage());
}
}
}
}
private String calculateMD5Hash(String input) throws Exception {
MessageDigest md = MessageDigest.getInstance("MD5");
byte[] hashBytes = md.digest(input.getBytes("UTF-8"));
StringBuilder hexString = new StringBuilder();
for (byte hashByte : hashBytes) {
String hex = Integer.toHexString(0xff & hashByte);
if (hex.length() == 1) hexString.append('0');
hexString.append(hex);
}
return hexString.toString();
}
private void processValidEvent(OrderEvent event) {
// Process the valid event
System.out.println("Processing valid event: " + event.getOrderId());
}
private void handleInvalidHash(OrderEvent event, String receivedHash, String calculatedHash) {
// Handle the invalid hash
System.err.println("Invalid hash for event: " + event.getOrderId());
System.err.println("Received hash: " + receivedHash);
System.err.println("Calculated hash: " + calculatedHash);
}
}
import com.fasterxml.jackson.annotation.JsonIgnore;
import com.fasterxml.jackson.databind.ObjectMapper;
import java.time.Instant;
import java.util.UUID;
public class OrderEvent {
private String eventType;
private String version;
private String timestamp;
private String orderId;
private String producerId;
private OrderPayload payload;
private EventMetadata metadata;
private String hash;
// Constructor, getters and setters
public OrderEvent() {
this.timestamp = Instant.now().toString();
}
@JsonIgnore
public OrderEvent copyWithoutHash() {
OrderEvent copy = new OrderEvent();
copy.setEventType(this.eventType);
copy.setVersion(this.version);
copy.setTimestamp(this.timestamp);
copy.setOrderId(this.orderId);
copy.setProducerId(this.producerId);
copy.setPayload(this.payload);
copy.setMetadata(this.metadata);
// Hash is intentionally not copied
return copy;
}
// Getters and setters
}
- Message Integrity: The hash ensures the message hasn't been tampered with
- Producer Verification: The producerId and hash combination verifies the source
- Idempotency Support: The orderId and hash can be used to detect duplicates
- Audit Trail: All messages can be verified for compliance and audit purposes
Would you like me to elaborate on any specific aspect of this Kafka order management system?
Efficient Binary Serialization for Order Messages
I'll design an efficient binary serialization format for your enhanced trading order message that reduces size while maintaining all the necessary information.
Binary Serialization Approach
C++ Implementation for Low-Level Performance
Size Comparison and Performance Analysis
Let's analyze the size and performance benefits of binary serialization versus JSON for your order message:
Size Comparison
Performance Benefits
Reduced Network Bandwidth:
Faster Serialization/Deserialization:
Lower CPU Usage:
Reduced Memory Footprint:
Message Processing Worker Implementation
Here's a Java worker implementation that processes the binary-serialized messages efficiently:
Key Benefits of This Approach
Significant Size Reduction: Binary serialization with optional compression dramatically reduces message size.
Efficient Split Order Handling: The implementation handles multi-part orders efficiently by tracking and re-assembling split orders.
Batch-Oriented Processing: Processes messages in batches for better throughput.
Memory Efficiency: Uses primitive types and compact binary representation to minimize memory usage.
Cross-Language Support: Both Java and C++ implementations allow for interoperability.
Improved Throughput: Lightweight serialization format means more messages can be processed per second.
Lower Latency: Faster serialization/deserialization means reduced processing time per message.
Would you like me to elaborate on any specific aspect of this implementation or provide additional optimizations?