Created
February 1, 2018 10:05
-
-
Save nmayorov/69a6794ffe8be42903349d83232408c8 to your computer and use it in GitHub Desktop.
Canonical constraint implementation for scipy.optimize
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class CanonicalConstraint(object): | |
def __init__(self, n_eq, n_ineq, fun, jac, hess, keep_feasible): | |
self.n_eq = n_eq | |
self.n_ineq = n_ineq | |
self.fun = fun | |
self.jac = jac | |
self.hess = hess | |
self.keep_feasible = keep_feasible | |
@classmethod | |
def from_user_constraint(cls, cfun, bounds, keep_feasible): | |
lb, ub = bounds | |
n_bounds = lb.shape[0] | |
if np.all(lb == ub): | |
fun, jac, hess = cls._equal_to_canonical(cfun, lb) | |
n_eq = n_bounds | |
n_ineq = 0 | |
elif np.all(lb == -np.inf): | |
fun, jac, hess = cls._less_to_canonical(cfun, ub) | |
n_eq = 0 | |
n_ineq = n_bounds | |
elif np.all(ub == np.inf): | |
fun, jac, hess = cls._greater_to_canonical(cfun, lb) | |
n_eq = 0 | |
n_ineq = n_bounds | |
else: | |
(fun, jac, hess, keep_feasible, n_eq, n_ineq) \ | |
= cls._interval_to_canonical(cfun, lb, ub, keep_feasible) | |
return cls(n_eq, n_ineq, fun, jac, hess, keep_feasible) | |
@classmethod | |
def concatenate(cls, canonical_constraints, sparse_jacobian): | |
def fun(x): | |
eq_all = [] | |
ineq_all = [] | |
for c in canonical_constraints: | |
eq, ineq = c.fun(x) | |
eq_all.append(eq) | |
ineq_all.append(ineq) | |
return np.hstack(eq_all), np.hstack(ineq_all) | |
if sparse_jacobian: | |
vstack = sps.vstack | |
else: | |
vstack = np.vstack | |
def jac(x): | |
eq_all = [] | |
ineq_all = [] | |
for c in canonical_constraints: | |
eq, ineq = c.jac(x) | |
eq_all.append(eq) | |
ineq_all.append(ineq) | |
return vstack(eq_all), vstack(ineq_all) | |
def hess(x, v_eq, v_ineq): | |
hess_all = [] | |
index_eq = 0 | |
index_ineq = 0 | |
for c in canonical_constraints: | |
vc_eq = v_eq[index_eq:index_eq + c.n_eq] | |
vc_ineq = v_ineq[index_ineq:index_ineq + c.n_ineq] | |
hess_all.append(c.hess(x, vc_eq, vc_ineq)) | |
index_eq += c.n_eq | |
index_ineq += c.n_ineq | |
result = np.zeros_like(x) | |
for h in hess_all: | |
result += h.dot(x) | |
return result | |
n_eq = sum(c.n_eq for c in canonical_constraints) | |
n_ineq = sum(c.n_ineq for c in canonical_constraints) | |
keep_feasible = np.hstack(( | |
c.keep_feasible for c in canonical_constraints)) | |
return cls(n_eq, n_ineq, fun, jac, hess, keep_feasible) | |
@staticmethod | |
def _equal_to_canonical(cfun, value): | |
empty = np.zeros(0) | |
def fun(x): | |
return cfun.fun(x) - value, empty | |
def jac(x): | |
return cfun.jac(x), empty | |
def hess(x, v_eq, v_ineq): | |
return cfun.hess(x, v_eq) | |
return fun, jac, hess | |
@staticmethod | |
def _less_to_canonical(cfun, ub): | |
empty = np.empty(0) | |
def fun(x): | |
return empty, cfun.fun(x) - ub | |
def jac(x): | |
return empty, cfun.jac(x) | |
def hess(x, v_eq, v_ineq): | |
return cfun.hess(x, v_ineq) | |
return fun, jac, hess | |
@staticmethod | |
def _greater_to_canonical(cfun, lb): | |
empty = np.empty(0) | |
def fun(x): | |
return empty, lb - cfun.fun(x) | |
def jac(x): | |
return empty, -cfun.jac(x) | |
def hess(x, v_eq, v_ineq): | |
return -cfun.hess(x, v_ineq) | |
return fun, jac, hess | |
@staticmethod | |
def _interval_to_canonical(cfun, lb, ub, keep_feasible): | |
equal = lb == ub | |
less = lb == -np.inf | |
greater = ub == np.inf | |
interval = ~equal & ~less & ~greater | |
equal = np.nonzero(equal)[0] | |
less = np.nonzero(less)[0] | |
greater = np.nonzero(greater)[0] | |
interval = np.nonzero(interval)[0] | |
n_equal = equal.shape[0] | |
n_less = equal.shape[0] | |
n_greater = greater.shape[0] | |
n_interval = interval.shape[0] | |
keep_feasible = np.hstack((keep_feasible[equal], | |
keep_feasible[less], | |
keep_feasible[greater], | |
keep_feasible[interval], | |
keep_feasible[interval])) | |
def fun(x): | |
f = cfun.fun(x) | |
eq = f[equal] - lb[equal] | |
le = f[less] - ub[less] | |
ge = lb[greater] - f[greater] | |
il = f[interval] - ub[interval] | |
ig = lb[interval] - f[interval] | |
return eq, np.hstack((le, ge, il, ig)) | |
def jac(x): | |
J = cfun.jac(x) | |
eq = J[equal] | |
le = J[less] | |
ge = -J[greater] | |
il = J[interval] | |
ig = -il | |
if sps.issparse(J): | |
ineq = sps.vstack((le, ge, il, ig)) | |
else: | |
ineq = np.vstack((le, ge, il, ig)) | |
return eq, ineq | |
def hess(x, v_eq, v_ineq): | |
v = np.zeros_like(lb) | |
v_l = v_ineq[:n_less] | |
v_g = v_ineq[n_less:n_less + n_greater] | |
v_il = v_ineq[-2 * n_interval:-n_interval] | |
v_ig = v_ineq[-n_interval:] | |
v[equal] = v_eq | |
v[less] = v_l | |
v[greater] = -v_g | |
v[interval] += v_il | |
v[interval] -= v_ig | |
return cfun.hess(x, v) | |
return (fun, jac, hess, keep_feasible, n_equal, | |
n_less + n_greater + 2 * n_interval) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment