Created
August 7, 2022 20:26
-
-
Save neale/474bcc55521c8d6b0dc94d428137b409 to your computer and use it in GitHub Desktop.
Perlin noise image augmentation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import numpy as np | |
import cv2 | |
from perlin_noise import PerlinNoise | |
import glob | |
def vector_field(x, y, noise, scale=0.01, w=100): | |
noise_x = w * noise([scale*x, scale*y]) | |
noise_y = w * noise([100+scale*x, scale*y]) | |
return noise_x, noise_y | |
if __name__ == '__main__': | |
w = 400 | |
scale = 0.008 | |
print (len(glob.glob('*.png')), 'images') ## change to refect path | |
for img_path in glob.glob('*.png'): | |
for n in range(1, 5): | |
for w in [300, 400, 500, 600]: | |
noise = PerlinNoise(n) | |
print ('reading', img_path, 'w:', w, 'n:', n) | |
x = cv2.imread(img_path) | |
x = x / 255. | |
result2d = np.empty_like(x) | |
for i in range(x.shape[0]): | |
for j in range(x.shape[1]): | |
new_i, new_j = vector_field(i, j, noise, scale, w) | |
out_x = int(np.clip(np.floor(i+new_i), 0, x.shape[0]-1)) | |
out_y = int(np.clip(np.floor(j+new_j), 0, x.shape[1]-1)) | |
result2d[out_x, out_y] = x[i, j] | |
print (result2d.min(), result2d.max()) | |
result2d[result2d == 0.] = 1.0 | |
result2d = (result2d*255.).astype(np.uint8) | |
cv2.imwrite(f'{img_path.split(".")[0]}n{n}w{w}.png', result2d) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment