Created
May 15, 2024 16:47
Axolotl Config for Llama-3-70B QLoRA
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
base_model: meta-llama/Meta-Llama-3-70B | |
model_type: LlamaForCausalLM | |
tokenizer_type: AutoTokenizer | |
load_in_8bit: false | |
load_in_4bit: true | |
strict: false | |
datasets: | |
- path: /home/migel/ai_datasets/tess-v1.5b-chatml.jsonl | |
type: sharegpt | |
conversation: llama3 | |
chat_template: llama3 | |
adapter: qlora | |
lora_r: 128 | |
lora_alpha: 16 | |
lora_modules_to_save: [embed_tokens, lm_head] | |
lora_dropout: 0.05 | |
lora_target_linear: true | |
dataset_prepared_path: last_run_prepared | |
val_set_size: 0.05 | |
output_dir: /home/migel/whiterabbitneo-llama3-70B | |
sequence_len: 4096 | |
sample_packing: true | |
pad_to_sequence_len: true | |
wandb_project: llama-3 | |
wandb_watch: | |
wandb_run_id: | |
wandb_log_model: | |
gradient_accumulation_steps: 4 | |
micro_batch_size: 3 | |
num_epochs: 2 | |
optimizer: adamw_8bit | |
lr_scheduler: constant | |
learning_rate: 1e-5 | |
train_on_inputs: false | |
group_by_length: false | |
bf16: auto | |
fp16: | |
tf32: false | |
gradient_checkpointing: true | |
gradient_checkpointing_kwargs: | |
use_reentrant: false | |
early_stopping_patience: | |
resume_from_checkpoint: | |
logging_steps: 1 | |
xformers_attention: | |
flash_attention: true | |
warmup_steps: 100 | |
evals_per_epoch: 5 | |
eval_table_size: | |
saves_per_epoch: 5 | |
save_total_limit: 10 | |
save_steps: | |
debug: | |
deepspeed: /home/migel/axolotl/deepspeed_configs/zero3_bf16.json | |
weight_decay: 0.00 | |
fsdp: | |
fsdp_config: | |
special_tokens: | |
pad_token: "<|end_of_text|>" |
Sweet. This is really helpful. Thanks!
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hey, this is optimized for 320GB VRAM. You can play around with micro_batch_size, gradient_accumulation_steps and lora_r to suit your needs.