Last active
December 6, 2019 15:41
-
-
Save mrkwjc/fd5d2c46a621f4922ff130433a02a4f5 to your computer and use it in GitHub Desktop.
CUDA vs. CPU sparse solver in Python - single precision
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# ### Interface cuSOLVER PyCUDA | |
from __future__ import print_function | |
import pycuda.gpuarray as gpuarray | |
import pycuda.driver as cuda | |
import pycuda.autoinit | |
import numpy as np | |
import scipy.sparse as sp | |
import ctypes | |
## Wrap the cuSOLVER cusolverSpDcsrlsvqr() using ctypes | |
## http://docs.nvidia.com/cuda/cusolver/#cusolver-lt-t-gt-csrlsvqr | |
# cuSparse | |
_libcusparse = ctypes.cdll.LoadLibrary('libcusparse.so') | |
_libcusparse.cusparseCreate.restype = int | |
_libcusparse.cusparseCreate.argtypes = [ctypes.c_void_p] | |
_libcusparse.cusparseDestroy.restype = int | |
_libcusparse.cusparseDestroy.argtypes = [ctypes.c_void_p] | |
_libcusparse.cusparseCreateMatDescr.restype = int | |
_libcusparse.cusparseCreateMatDescr.argtypes = [ctypes.c_void_p] | |
# cuSOLVER | |
_libcusolver = ctypes.cdll.LoadLibrary('libcusolver.so') | |
_libcusolver.cusolverSpCreate.restype = int | |
_libcusolver.cusolverSpCreate.argtypes = [ctypes.c_void_p] | |
_libcusolver.cusolverSpDestroy.restype = int | |
_libcusolver.cusolverSpDestroy.argtypes = [ctypes.c_void_p] | |
_libcusolver.cusolverSpScsrlsvqr.restype = int | |
_libcusolver.cusolverSpScsrlsvqr.argtypes= [ctypes.c_void_p, | |
ctypes.c_int, | |
ctypes.c_int, | |
ctypes.c_void_p, | |
ctypes.c_void_p, | |
ctypes.c_void_p, | |
ctypes.c_void_p, | |
ctypes.c_void_p, | |
ctypes.c_float, | |
ctypes.c_int, | |
ctypes.c_void_p, | |
ctypes.c_void_p] | |
def cuspsolve(A, b): | |
Acsr = sp.csr_matrix(A, dtype=np.float32) | |
b = np.asarray(b, dtype=np.float32) | |
x = np.empty_like(b) | |
# Copy arrays to GPU | |
dcsrVal = gpuarray.to_gpu(Acsr.data) | |
dcsrColInd = gpuarray.to_gpu(Acsr.indices) | |
dcsrIndPtr = gpuarray.to_gpu(Acsr.indptr) | |
dx = gpuarray.to_gpu(x) | |
db = gpuarray.to_gpu(b) | |
# Create solver parameters | |
m = ctypes.c_int(Acsr.shape[0]) # Need check if A is square | |
nnz = ctypes.c_int(Acsr.nnz) | |
descrA = ctypes.c_void_p() | |
reorder = ctypes.c_int(0) | |
tol = ctypes.c_float(1e-10) | |
singularity = ctypes.c_int(0) # -1 if A not singular | |
# create cusparse handle | |
_cusp_handle = ctypes.c_void_p() | |
status = _libcusparse.cusparseCreate(ctypes.byref(_cusp_handle)) | |
assert(status == 0) | |
cusp_handle = _cusp_handle.value | |
# create MatDescriptor | |
status = _libcusparse.cusparseCreateMatDescr(ctypes.byref(descrA)) | |
assert(status == 0) | |
#create cusolver handle | |
_cuso_handle = ctypes.c_void_p() | |
status = _libcusolver.cusolverSpCreate(ctypes.byref(_cuso_handle)) | |
assert(status == 0) | |
cuso_handle = _cuso_handle.value | |
# Solve | |
res=_libcusolver.cusolverSpScsrlsvqr(cuso_handle, | |
m, | |
nnz, | |
descrA, | |
dcsrVal.gpudata.__int__(), | |
dcsrIndPtr.gpudata.__int__(), | |
dcsrColInd.gpudata.__int__(), | |
db.gpudata.__int__(), | |
tol, | |
reorder, | |
dx.gpudata.__int__(), | |
ctypes.byref(singularity)) | |
assert(res == 0) | |
if singularity.value != -1: | |
raise ValueError('Singular matrix!') | |
x = dx.get() # Get result as numpy array | |
# Destroy handles | |
status = _libcusolver.cusolverSpDestroy(cuso_handle) | |
assert(status == 0) | |
status = _libcusparse.cusparseDestroy(cusp_handle) | |
assert(status == 0) | |
# Return result | |
return x | |
# Test | |
if __name__ == '__main__': | |
A = np.diag(np.arange(1, 5, dtype=np.float32)) | |
b = np.ones(4, dtype=np.float32) | |
x = cuspsolve(A, b) | |
np.testing.assert_almost_equal(x, np.array([1. , 0.5, 0.33333333, 0.25], dtype=np.float32)) | |
# Timing comparison | |
from scipy.sparse import rand | |
from scipy.sparse.linalg import spsolve | |
from scipy.sparse import coo_matrix | |
import time | |
n = 10000 | |
i = j = np.arange(n) | |
diag = np.ones(n, dtype=np.float32) | |
A = rand(n, n, density=0.001, dtype=np.float32) | |
A = A.tocsr() | |
A[i, j] = diag | |
b = np.ones(n, dtype=np.float32) | |
t0 = time.time() | |
x = spsolve(A, b, use_umfpack=False) # umfpack works with flost64 only | |
dt1 = time.time() - t0 | |
print("scipy.sparse.linalg.spsolve time: %s" %dt1) | |
t0 = time.time() | |
x = cuspsolve(A, b) | |
dt2 = time.time() - t0 | |
print("cuspsolve time: %s" %dt2) | |
ratio = dt1/dt2 | |
if ratio > 1: | |
print("CUDA is %s times faster than CPU." %ratio) | |
else: | |
print("CUDA is %s times slower than CPU." %(1./ratio)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment