Last active
January 19, 2019 00:55
-
-
Save mrkwjc/567c1d950aa902700091830ce924d07a to your computer and use it in GitHub Desktop.
Numpy performance tests...
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: UTF-8 -*- | |
# Roughly based on: http://stackoverflow.com/questions/11443302/compiling-numpy-with-openblas-integration | |
from __future__ import print_function | |
import numpy as np | |
from time import time | |
# Let's take the randomness out of random numbers (for reproducibility) | |
np.random.seed(0) | |
size = 4096 | |
A, B = np.random.random((size, size)), np.random.random((size, size)) | |
C, D = np.random.random((size * 128,)), np.random.random((size * 128,)) | |
E = np.random.random((int(size / 2), int(size / 4))) | |
F = np.random.random((int(size / 2), int(size / 2))) | |
F = np.dot(F, F.T) | |
G = np.random.random((int(size / 2), int(size / 2))) | |
# Matrix multiplication | |
N = 20 | |
t = time() | |
for i in range(N): | |
np.dot(A, B) | |
delta = time() - t | |
print('Dotted two %dx%d matrices in %0.2f s.' % (size, size, delta / N)) | |
# Einsum dot | |
N = 1 | |
t = time() | |
for i in range(N): | |
np.einsum('ij,jk->ik', A, B) | |
delta = time() - t | |
print("Einsum dot of two %dx%d matrices in %0.2f s." % (size, size, delta / N)) | |
del A, B | |
# Vector multiplication | |
N = 5000 | |
t = time() | |
for i in range(N): | |
np.dot(C, D) | |
delta = time() - t | |
print('Dotted two vectors of length %d in %0.2f ms.' % (size * 128, 1e3 * delta / N)) | |
del C, D | |
# Singular Value Decomposition (SVD) | |
N = 3 | |
t = time() | |
for i in range(N): | |
np.linalg.svd(E, full_matrices = False) | |
delta = time() - t | |
print("SVD of a %dx%d matrix in %0.2f s." % (size / 2, size / 4, delta / N)) | |
del E | |
# Cholesky Decomposition | |
N = 3 | |
t = time() | |
for i in range(N): | |
np.linalg.cholesky(F) | |
delta = time() - t | |
print("Cholesky decomposition of a %dx%d matrix in %0.2f s." % (size / 2, size / 2, delta / N)) | |
# Eigendecomposition | |
t = time() | |
for i in range(N): | |
np.linalg.eig(G) | |
delta = time() - t | |
print("Eigendecomposition of a %dx%d matrix in %0.2f s." % (size / 2, size / 2, delta / N)) | |
print('') | |
print('This was obtained using the following Numpy configuration:') | |
np.__config__.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment