Last active
February 21, 2025 09:55
-
-
Save mowshon/2a0664fab0ae799734594a5e91e518d5 to your computer and use it in GitHub Desktop.
Zoom-in Effect for Moviepy. This function makes the zoom effect smoother.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import moviepy.editor as mp | |
import math | |
from PIL import Image | |
import numpy | |
def zoom_in_effect(clip, zoom_ratio=0.04): | |
def effect(get_frame, t): | |
img = Image.fromarray(get_frame(t)) | |
base_size = img.size | |
new_size = [ | |
math.ceil(img.size[0] * (1 + (zoom_ratio * t))), | |
math.ceil(img.size[1] * (1 + (zoom_ratio * t))) | |
] | |
# The new dimensions must be even. | |
new_size[0] = new_size[0] + (new_size[0] % 2) | |
new_size[1] = new_size[1] + (new_size[1] % 2) | |
img = img.resize(new_size, Image.LANCZOS) | |
x = math.ceil((new_size[0] - base_size[0]) / 2) | |
y = math.ceil((new_size[1] - base_size[1]) / 2) | |
img = img.crop([ | |
x, y, new_size[0] - x, new_size[1] - y | |
]).resize(base_size, Image.LANCZOS) | |
result = numpy.array(img) | |
img.close() | |
return result | |
return clip.transform(effect) | |
size = (1920, 1080) | |
images = [ | |
'https://www.colorado.edu/cumuseum/sites/default/files/styles/widescreen/public/slider/coachwhip2_1.jpg', | |
'https://www.colorado.edu/cumuseum/sites/default/files/styles/widescreen/public/slider/green2_1.jpg', | |
'https://www.colorado.edu/cumuseum/sites/default/files/styles/widescreen/public/slider/westterrgarter_1.jpg', | |
'https://www.colorado.edu/cumuseum/sites/default/files/styles/widescreen/public/slider/prairierattle4.jpg' | |
] | |
slides = [] | |
for n, url in enumerate(images): | |
slides.append( | |
mp.ImageClip(url).set_fps(25).set_duration(5).resize(size) | |
) | |
slides[n] = zoom_in_effect(slides[n], 0.04) | |
video = mp.concatenate_videoclips(slides) | |
video.write_videofile('zoomin.mp4') |
@harsh-zymr thank you
Updated
Correction with typing and comments:
from collections.abc import Callable
from moviepy import VideoClip
from PIL import Image
from PIL.Image import Resampling
import math
import numpy
def zoom_effect(
clip: VideoClip,
ratio: float = 0.04,
) -> VideoClip:
"""
Apply a zoom effect to a clip.
"""
def _apply(
get_frame: Callable[[float], numpy.ndarray],
t: float,
) -> numpy.ndarray:
# Get the frame
img = Image.fromarray(get_frame(t))
base_size = img.size
# Calculate the new size
new_size = (
math.ceil(img.size[0] * (1 + (ratio * t))),
math.ceil(img.size[1] * (1 + (ratio * t))),
)
# Make the size even
new_size = (
new_size[0] + (new_size[0] % 2),
new_size[1] + (new_size[1] % 2),
)
# Resize the image
img = img.resize(new_size, Resampling.LANCZOS)
# Crop the image
x = math.ceil((new_size[0] - base_size[0]) / 2)
y = math.ceil((new_size[1] - base_size[1]) / 2)
img = img.crop((x, y, new_size[0] - x, new_size[1] - y)).resize(
base_size, Resampling.LANCZOS
)
# Convert to numpy array and return
result = numpy.array(img)
img.close()
return result
return clip.transform(_apply)
Complete working example for using local images with MoviePy V2:
from collections.abc import Callable
from moviepy import *
from PIL import Image
from PIL.Image import Resampling
import math
import numpy
def zoom_effect(
clip: VideoClip,
ratio: float = 0.04,
) -> VideoClip:
"""
Apply a zoom effect to a clip.
"""
def _apply(
get_frame: Callable[[float], numpy.ndarray],
t: float,
) -> numpy.ndarray:
# Get the frame
img = Image.fromarray(get_frame(t))
base_size = img.size
# Calculate the new size
new_size = (
math.ceil(img.size[0] * (1 + (ratio * t))),
math.ceil(img.size[1] * (1 + (ratio * t))),
)
# Make the size even
new_size = (
new_size[0] + (new_size[0] % 2),
new_size[1] + (new_size[1] % 2),
)
# Resize the image
img = img.resize(new_size, Resampling.LANCZOS)
# Crop the image
x = math.ceil((new_size[0] - base_size[0]) / 2)
y = math.ceil((new_size[1] - base_size[1]) / 2)
img = img.crop((x, y, new_size[0] - x, new_size[1] - y)).resize(
base_size, Resampling.LANCZOS
)
# Convert to numpy array and return
result = numpy.array(img)
img.close()
return result
return clip.transform(_apply)
size = (1920, 1080)
images = [
'001.jpg',
'002.jpg',
'003.jpg',
'004.jpg'
]
slides = []
for n, url in enumerate(images):
slides.append(
ImageClip(url).with_fps(24).with_duration(5).resized(size)
)
slides[n] = zoom_effect(slides[n])
video = concatenate_videoclips(slides)
video.write_videofile('zoomin.mp4')
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
for the 2024-25 people
fl
is replaced withtransform
.