Created
January 19, 2023 11:27
-
-
Save mlblogger/8a2099859cd542ba634d2c64b405685e to your computer and use it in GitHub Desktop.
Simple trading environment using openai gym
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gym | |
from gym.envs.registration import register | |
from gym import error, spaces, utils | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import pandas_datareader.data as web | |
import arrow | |
import random | |
import sys | |
class TradingEnv(gym.Env): | |
def __init__(self, start_date, end_date, tc=0.05/100, ticker='^DJI'): | |
self.start = start_date | |
self.end = end_date | |
self.tc = tc | |
self.ticker = ticker | |
self.action_space = spaces.Discrete(1) | |
self.observation_space = spaces.Box(low=-1,high=1,dtype=np.float32) | |
returns = self.load_dataset() | |
self.data_df = self.create_features(returns) | |
self.curr_index = 0 | |
self.data_len = self.data_df.shape[0] | |
self.action = 0 | |
def step(self, action): | |
done = False | |
stock_return = self.extract_return(self.data_df, self.curr_index) | |
change_in_position = np.abs(self.action - action) | |
cost = change_in_position * self.tc | |
reward = action*stock_return - cost | |
if self.curr_index == self.data_len - 2: | |
done = True | |
self.curr_index += 1 | |
self.action = action | |
obs = self.extract_state(self.data_df, self.curr_index).values | |
info = { 'date' : self.data_df.index[self.curr_index], 'return' : stock_return } | |
return obs, reward, done, info | |
def reset(self): | |
self.curr_index = 0 | |
return self.extract_state(self.data_df, self.curr_index).values | |
def render(self,mode='human'): | |
pass | |
def extract_return(self, df, i): | |
return df.iloc[i]['Y'] | |
def extract_state(self, df, i): | |
return df.iloc[i][['r%d' % i for i in range(5)]] | |
def load_dataset(self): | |
df = web.DataReader(self.ticker, 'stooq') | |
mask = ( self.start <= df.index ) & ( df.index <= self.end ) | |
df = df[mask] | |
df = df.sort_values(by='Date') | |
returns = df['Close'].pct_change() | |
return returns | |
def create_features(self, returns): | |
dfs = [] | |
for i in range(5): | |
dfs.append(returns.shift(i).rename('r%d'%i)) | |
dfs.append(returns.shift(-1).rename('Y')) | |
df_net = pd.concat(dfs, axis=1) | |
df_net = df_net.dropna() | |
return df_net | |
ENV_NAME = 'TradingEnv-v0' | |
reg = register( | |
id=ENV_NAME, | |
entry_point='__main__:TradingEnv', | |
kwargs={ | |
'start_date' : '2019-01-01', | |
'end_date' : '2022-01-10', | |
} | |
) | |
if __name__ == '__main__': | |
env = gym.make(ENV_NAME) | |
obs = env.reset() | |
done = False | |
reward_returns = [] | |
while not done: | |
action = random.uniform(-1,1) | |
obs, reward, done, info = env.step(action) | |
reward_returns.append( (reward,info['return']) ) | |
i = list(range(len(reward_returns))) | |
agent_returns = np.cumprod([ 1 + x[0] for x in reward_returns ]) | |
stock_returns = np.cumprod([ 1 + x[1] for x in reward_returns ]) | |
plt.plot(i, agent_returns, label='random_agent_return') | |
plt.plot(i, stock_returns, label='actual_stock_return') | |
plt.legend() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment