Created
January 27, 2018 10:35
-
-
Save milani/591a0070409efd5ecbd63afff4f1886a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
============================= test session starts ============================== | |
platform linux -- Python 3.5.3, pytest-3.3.2, py-1.5.2, pluggy-0.6.0 | |
rootdir: /fast/keras-rcnn, inifile: setup.cfg | |
collected 9 items | |
tests/layers/object_detection/test_anchor_target.py FFFFFFFFF [100%] | |
=================================== FAILURES =================================== | |
__________________________________ test_label __________________________________ | |
def test_label(): | |
stride = 16 | |
feat_h, feat_w = (14, 14) | |
img_info = keras.backend.variable([[224, 224, 3]]) | |
gt_boxes = keras.backend.variable(100 * numpy.random.random((91, 4))) | |
> gt_boxes = tensorflow.convert_to_tensor(gt_boxes, dtype=tensorflow.float32) | |
tests/layers/object_detection/test_anchor_target.py:18: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py:836: in convert_to_tensor | |
as_ref=False) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py:926: in internal_convert_to_tensor | |
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
v = <tf.Variable 'Variable_1:0' shape=(91, 4) dtype=float64_ref> | |
dtype = tf.float32, name = None, as_ref = False | |
@staticmethod | |
def _TensorConversionFunction(v, dtype=None, name=None, as_ref=False): # pylint: disable=invalid-name | |
"""Utility function for converting a Variable to a Tensor.""" | |
_ = name | |
if dtype and not dtype.is_compatible_with(v.dtype): | |
raise ValueError( | |
"Incompatible type conversion requested to type '%s' for variable " | |
> "of type '%s'" % (dtype.name, v.dtype.name)) | |
E ValueError: Incompatible type conversion requested to type 'float32' for variable of type 'float64_ref' | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/ops/variables.py:726: ValueError | |
________________________ test_subsample_positive_labels ________________________ | |
def test_subsample_positive_labels(): | |
x = keras.backend.ones((10,)) | |
y = anchor_target.subsample_positive_labels( | |
> x) | |
tests/layers/object_detection/test_anchor_target.py:73: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
keras_rcnn/layers/object_detection/_anchor_target.py:297: in subsample_positive_labels | |
return keras.backend.switch(condition, labels, lambda: more_positive()) | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:2811: in switch | |
else_expression_fn) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/util/deprecation.py:316: in new_func | |
return func(*args, **kwargs) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py:1864: in cond | |
orig_res_f, res_f = context_f.BuildCondBranch(false_fn) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py:1725: in BuildCondBranch | |
original_result = fn() | |
keras_rcnn/layers/object_detection/_anchor_target.py:297: in <lambda> | |
return keras.backend.switch(condition, labels, lambda: more_positive()) | |
keras_rcnn/layers/object_detection/_anchor_target.py:291: in more_positive | |
updates = inverse_labels + updates | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/ops/math_ops.py:885: in binary_op_wrapper | |
y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y") | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py:836: in convert_to_tensor | |
as_ref=False) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py:926: in internal_convert_to_tensor | |
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
t = <tf.Tensor 'cond/mul:0' shape=(?,) dtype=float32>, dtype = tf.float64 | |
name = 'y', as_ref = False | |
def _TensorTensorConversionFunction(t, dtype=None, name=None, as_ref=False): | |
_ = name, as_ref | |
if dtype and not dtype.is_compatible_with(t.dtype): | |
raise ValueError( | |
"Tensor conversion requested dtype %s for Tensor with dtype %s: %r" % | |
> (dtype.name, t.dtype.name, str(t))) | |
E ValueError: Tensor conversion requested dtype float64 for Tensor with dtype float32: 'Tensor("cond/mul:0", shape=(?,), dtype=float32)' | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py:774: ValueError | |
________________________ test_subsample_negative_labels ________________________ | |
def test_subsample_negative_labels(): | |
> x = keras.backend.zeros((10,)) | |
tests/layers/object_detection/test_anchor_target.py:89: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:691: in zeros | |
return variable(v, dtype=dtype, name=name) | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:392: in variable | |
v = tf.Variable(value, dtype=tf.as_dtype(dtype), name=name) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/ops/variables.py:213: in __init__ | |
constraint=constraint) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
self = <[AttributeError("'Variable' object has no attribute '_variable'") raised in repr()] Variable object at 0x7f0148941668> | |
initial_value = <tf.Tensor 'zeros:0' shape=(10,) dtype=float64> | |
trainable = True, collections = ['variables', 'trainable_variables'] | |
validate_shape = True, caching_device = None, name = 'Variable_3/' | |
dtype = tf.float64, expected_shape = None, constraint = None | |
def _init_from_args(self, | |
initial_value=None, | |
trainable=True, | |
collections=None, | |
validate_shape=True, | |
caching_device=None, | |
name=None, | |
dtype=None, | |
expected_shape=None, | |
constraint=None): | |
"""Creates a new variable from arguments. | |
Args: | |
initial_value: A `Tensor`, or Python object convertible to a `Tensor`, | |
which is the initial value for the Variable. The initial value must have | |
a shape specified unless `validate_shape` is set to False. Can also be a | |
callable with no argument that returns the initial value when called. | |
(Note that initializer functions from init_ops.py must first be bound | |
to a shape before being used here.) | |
trainable: If `True`, the default, also adds the variable to the graph | |
collection `GraphKeys.TRAINABLE_VARIABLES`. This collection is used as | |
the default list of variables to use by the `Optimizer` classes. | |
collections: List of graph collections keys. The new variable is added to | |
these collections. Defaults to `[GraphKeys.GLOBAL_VARIABLES]`. | |
validate_shape: If `False`, allows the variable to be initialized with a | |
value of unknown shape. If `True`, the default, the shape of | |
`initial_value` must be known. | |
caching_device: Optional device string or function describing where the | |
Variable should be cached for reading. Defaults to the Variable's | |
device. If not `None`, caches on another device. Typical use is to | |
cache on the device where the Ops using the Variable reside, to | |
deduplicate copying through `Switch` and other conditional statements. | |
name: Optional name for the variable. Defaults to `'Variable'` and gets | |
uniquified automatically. | |
dtype: If set, initial_value will be converted to the given type. | |
If None, either the datatype will be kept (if initial_value is | |
a Tensor) or float32 will be used (if it is a Python object convertible | |
to a Tensor). | |
expected_shape: Deprecated. Ignored. | |
constraint: An optional projection function to be applied to the variable | |
after being updated by an `Optimizer` (e.g. used to implement norm | |
constraints or value constraints for layer weights). The function must | |
take as input the unprojected Tensor representing the value of the | |
variable and return the Tensor for the projected value | |
(which must have the same shape). Constraints are not safe to | |
use when doing asynchronous distributed training. | |
Raises: | |
ValueError: If the initial value is not specified, or does not have a | |
shape and `validate_shape` is `True`. | |
""" | |
_ = expected_shape | |
if initial_value is None: | |
raise ValueError("initial_value must be specified.") | |
init_from_fn = callable(initial_value) | |
if collections is None: | |
collections = [ops.GraphKeys.GLOBAL_VARIABLES] | |
if not isinstance(collections, (list, tuple, set)): | |
raise ValueError( | |
"collections argument to Variable constructor must be a list, tuple, " | |
"or set. Got %s of type %s" % (collections, type(collections))) | |
if constraint is not None and not callable(constraint): | |
raise ValueError("The `constraint` argument must be a callable.") | |
if trainable and ops.GraphKeys.TRAINABLE_VARIABLES not in collections: | |
collections = list(collections) + [ops.GraphKeys.TRAINABLE_VARIABLES] | |
with ops.control_dependencies(None): | |
with ops.name_scope(name, "Variable", [] if init_from_fn else | |
[initial_value]) as name: | |
if init_from_fn: | |
# Use attr_scope and device(None) to simulate the behavior of | |
# colocate_with when the variable we want to colocate with doesn't | |
# yet exist. | |
true_name = ops._name_from_scope_name(name) # pylint: disable=protected-access | |
attr = attr_value_pb2.AttrValue( | |
list=attr_value_pb2.AttrValue.ListValue( | |
s=[compat.as_bytes("loc:@%s" % true_name)])) | |
# pylint: disable=protected-access | |
with ops.get_default_graph()._attr_scope({"_class": attr}): | |
with ops.name_scope("Initializer"), ops.device(None): | |
self._initial_value = ops.convert_to_tensor( | |
initial_value(), name="initial_value", dtype=dtype) | |
shape = (self._initial_value.get_shape() | |
if validate_shape else tensor_shape.unknown_shape()) | |
self._variable = state_ops.variable_op_v2( | |
shape, | |
self._initial_value.dtype.base_dtype, | |
name=name) | |
# pylint: enable=protected-access | |
# Or get the initial value from a Tensor or Python object. | |
else: | |
self._initial_value = ops.convert_to_tensor( | |
initial_value, name="initial_value", dtype=dtype) | |
# pylint: disable=protected-access | |
if self._initial_value.op._get_control_flow_context() is not None: | |
raise ValueError( | |
"Initializer for variable %s is from inside a control-flow " | |
"construct, such as a loop or conditional. When creating a " | |
"variable inside a loop or conditional, use a lambda as the " | |
> "initializer." % name) | |
E ValueError: Initializer for variable Variable_3/ is from inside a control-flow construct, such as a loop or conditional. When creating a variable inside a loop or conditional, use a lambda as the initializer. | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/ops/variables.py:322: ValueError | |
_________________________________ test_balance _________________________________ | |
def test_balance(): | |
> x = keras.backend.zeros((91,)) | |
tests/layers/object_detection/test_anchor_target.py:108: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:691: in zeros | |
return variable(v, dtype=dtype, name=name) | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:392: in variable | |
v = tf.Variable(value, dtype=tf.as_dtype(dtype), name=name) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/ops/variables.py:213: in __init__ | |
constraint=constraint) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
self = <[AttributeError("'Variable' object has no attribute '_variable'") raised in repr()] Variable object at 0x7f0148faed68> | |
initial_value = <tf.Tensor 'zeros_1:0' shape=(91,) dtype=float64> | |
trainable = True, collections = ['variables', 'trainable_variables'] | |
validate_shape = True, caching_device = None, name = 'Variable_4/' | |
dtype = tf.float64, expected_shape = None, constraint = None | |
def _init_from_args(self, | |
initial_value=None, | |
trainable=True, | |
collections=None, | |
validate_shape=True, | |
caching_device=None, | |
name=None, | |
dtype=None, | |
expected_shape=None, | |
constraint=None): | |
"""Creates a new variable from arguments. | |
Args: | |
initial_value: A `Tensor`, or Python object convertible to a `Tensor`, | |
which is the initial value for the Variable. The initial value must have | |
a shape specified unless `validate_shape` is set to False. Can also be a | |
callable with no argument that returns the initial value when called. | |
(Note that initializer functions from init_ops.py must first be bound | |
to a shape before being used here.) | |
trainable: If `True`, the default, also adds the variable to the graph | |
collection `GraphKeys.TRAINABLE_VARIABLES`. This collection is used as | |
the default list of variables to use by the `Optimizer` classes. | |
collections: List of graph collections keys. The new variable is added to | |
these collections. Defaults to `[GraphKeys.GLOBAL_VARIABLES]`. | |
validate_shape: If `False`, allows the variable to be initialized with a | |
value of unknown shape. If `True`, the default, the shape of | |
`initial_value` must be known. | |
caching_device: Optional device string or function describing where the | |
Variable should be cached for reading. Defaults to the Variable's | |
device. If not `None`, caches on another device. Typical use is to | |
cache on the device where the Ops using the Variable reside, to | |
deduplicate copying through `Switch` and other conditional statements. | |
name: Optional name for the variable. Defaults to `'Variable'` and gets | |
uniquified automatically. | |
dtype: If set, initial_value will be converted to the given type. | |
If None, either the datatype will be kept (if initial_value is | |
a Tensor) or float32 will be used (if it is a Python object convertible | |
to a Tensor). | |
expected_shape: Deprecated. Ignored. | |
constraint: An optional projection function to be applied to the variable | |
after being updated by an `Optimizer` (e.g. used to implement norm | |
constraints or value constraints for layer weights). The function must | |
take as input the unprojected Tensor representing the value of the | |
variable and return the Tensor for the projected value | |
(which must have the same shape). Constraints are not safe to | |
use when doing asynchronous distributed training. | |
Raises: | |
ValueError: If the initial value is not specified, or does not have a | |
shape and `validate_shape` is `True`. | |
""" | |
_ = expected_shape | |
if initial_value is None: | |
raise ValueError("initial_value must be specified.") | |
init_from_fn = callable(initial_value) | |
if collections is None: | |
collections = [ops.GraphKeys.GLOBAL_VARIABLES] | |
if not isinstance(collections, (list, tuple, set)): | |
raise ValueError( | |
"collections argument to Variable constructor must be a list, tuple, " | |
"or set. Got %s of type %s" % (collections, type(collections))) | |
if constraint is not None and not callable(constraint): | |
raise ValueError("The `constraint` argument must be a callable.") | |
if trainable and ops.GraphKeys.TRAINABLE_VARIABLES not in collections: | |
collections = list(collections) + [ops.GraphKeys.TRAINABLE_VARIABLES] | |
with ops.control_dependencies(None): | |
with ops.name_scope(name, "Variable", [] if init_from_fn else | |
[initial_value]) as name: | |
if init_from_fn: | |
# Use attr_scope and device(None) to simulate the behavior of | |
# colocate_with when the variable we want to colocate with doesn't | |
# yet exist. | |
true_name = ops._name_from_scope_name(name) # pylint: disable=protected-access | |
attr = attr_value_pb2.AttrValue( | |
list=attr_value_pb2.AttrValue.ListValue( | |
s=[compat.as_bytes("loc:@%s" % true_name)])) | |
# pylint: disable=protected-access | |
with ops.get_default_graph()._attr_scope({"_class": attr}): | |
with ops.name_scope("Initializer"), ops.device(None): | |
self._initial_value = ops.convert_to_tensor( | |
initial_value(), name="initial_value", dtype=dtype) | |
shape = (self._initial_value.get_shape() | |
if validate_shape else tensor_shape.unknown_shape()) | |
self._variable = state_ops.variable_op_v2( | |
shape, | |
self._initial_value.dtype.base_dtype, | |
name=name) | |
# pylint: enable=protected-access | |
# Or get the initial value from a Tensor or Python object. | |
else: | |
self._initial_value = ops.convert_to_tensor( | |
initial_value, name="initial_value", dtype=dtype) | |
# pylint: disable=protected-access | |
if self._initial_value.op._get_control_flow_context() is not None: | |
raise ValueError( | |
"Initializer for variable %s is from inside a control-flow " | |
"construct, such as a loop or conditional. When creating a " | |
"variable inside a loop or conditional, use a lambda as the " | |
> "initializer." % name) | |
E ValueError: Initializer for variable Variable_4/ is from inside a control-flow construct, such as a loop or conditional. When creating a variable inside a loop or conditional, use a lambda as the initializer. | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/ops/variables.py:322: ValueError | |
_______________________________ test_overlapping _______________________________ | |
def test_overlapping(): | |
stride = 16 | |
features = (14, 14) | |
img_info = keras.backend.variable([[224, 224, 3]]) | |
gt_boxes = numpy.zeros((91, 4)) | |
gt_boxes = keras.backend.variable(gt_boxes) | |
img_info = img_info[0] | |
all_anchors = keras_rcnn.backend.shift(features, stride) | |
inds_inside, all_inside_anchors = anchor_target.inside_image( | |
all_anchors, img_info) | |
a, max_overlaps, gt_argmax_overlaps_inds = anchor_target.overlapping( | |
all_inside_anchors, gt_boxes, inds_inside) | |
> a = keras.backend.eval(a) | |
tests/layers/object_detection/test_anchor_target.py:149: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:660: in eval | |
return to_dense(x).eval(session=get_session()) | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:189: in get_session | |
[tf.is_variable_initialized(v) for v in candidate_vars]) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:889: in run | |
run_metadata_ptr) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:1105: in _run | |
self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:427: in __init__ | |
self._assert_fetchable(graph, fetch.op) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
self = <tensorflow.python.client.session._FetchHandler object at 0x7f0148c09f28> | |
graph = <tensorflow.python.framework.ops.Graph object at 0x7f0148fbd9b0> | |
op = <tf.Operation 'IsVariableInitialized' type=IsVariableInitialized> | |
def _assert_fetchable(self, graph, op): | |
if not graph.is_fetchable(op): | |
raise ValueError( | |
> 'Operation %r has been marked as not fetchable.' % op.name) | |
E ValueError: Operation 'IsVariableInitialized' has been marked as not fetchable. | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:440: ValueError | |
----------------------------- Captured stderr call ----------------------------- | |
2018-01-27 14:28:19.059249: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA | |
2018-01-27 14:28:19.236875: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Found device 0 with properties: | |
name: GeForce GTX 1070 major: 6 minor: 1 memoryClockRate(GHz): 1.7715 | |
pciBusID: 0000:02:00.0 | |
totalMemory: 7.92GiB freeMemory: 4.21GiB | |
2018-01-27 14:28:19.236909: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:02:00.0, compute capability: 6.1) | |
__________________________________ test_unmap __________________________________ | |
def test_unmap(): | |
stride = 16 | |
features = (14, 14) | |
anchors = 9 | |
total_anchors = features[0] * features[1] * anchors | |
img_info = keras.backend.variable([[224, 224, 3]]) | |
gt_boxes = numpy.zeros((91, 4)) | |
gt_boxes = keras.backend.variable(gt_boxes) | |
all_anchors = keras_rcnn.backend.shift(features, stride) | |
inds_inside, all_inside_anchors = anchor_target.inside_image( | |
all_anchors, img_info[0]) | |
argmax_overlaps_indices, labels = anchor_target.label( | |
> gt_boxes, all_inside_anchors, inds_inside) | |
tests/layers/object_detection/test_anchor_target.py:175: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
keras_rcnn/layers/object_detection/_anchor_target.py:196: in label | |
return argmax_overlaps_inds, balance(labels) | |
keras_rcnn/layers/object_detection/_anchor_target.py:136: in balance | |
labels = subsample_positive_labels(labels) | |
keras_rcnn/layers/object_detection/_anchor_target.py:297: in subsample_positive_labels | |
return keras.backend.switch(condition, labels, lambda: more_positive()) | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:2811: in switch | |
else_expression_fn) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/util/deprecation.py:316: in new_func | |
return func(*args, **kwargs) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py:1864: in cond | |
orig_res_f, res_f = context_f.BuildCondBranch(false_fn) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py:1725: in BuildCondBranch | |
original_result = fn() | |
keras_rcnn/layers/object_detection/_anchor_target.py:297: in <lambda> | |
return keras.backend.switch(condition, labels, lambda: more_positive()) | |
keras_rcnn/layers/object_detection/_anchor_target.py:291: in more_positive | |
updates = inverse_labels + updates | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/ops/math_ops.py:885: in binary_op_wrapper | |
y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y") | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py:836: in convert_to_tensor | |
as_ref=False) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py:926: in internal_convert_to_tensor | |
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
t = <tf.Tensor 'cond_1/mul:0' shape=(?,) dtype=float32>, dtype = tf.float64 | |
name = 'y', as_ref = False | |
def _TensorTensorConversionFunction(t, dtype=None, name=None, as_ref=False): | |
_ = name, as_ref | |
if dtype and not dtype.is_compatible_with(t.dtype): | |
raise ValueError( | |
"Tensor conversion requested dtype %s for Tensor with dtype %s: %r" % | |
> (dtype.name, t.dtype.name, str(t))) | |
E ValueError: Tensor conversion requested dtype float64 for Tensor with dtype float32: 'Tensor("cond_1/mul:0", shape=(?,), dtype=float32)' | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py:774: ValueError | |
______________________________ test_inside_image _______________________________ | |
def test_inside_image(): | |
stride = 16 | |
features = (14, 14) | |
all_anchors = keras_rcnn.backend.shift(features, stride) | |
img_info = (224, 224, 1) | |
inds_inside, all_inside_anchors = anchor_target.inside_image( | |
all_anchors, img_info) | |
> inds_inside = keras.backend.eval(inds_inside) | |
tests/layers/object_detection/test_anchor_target.py:203: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:660: in eval | |
return to_dense(x).eval(session=get_session()) | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:189: in get_session | |
[tf.is_variable_initialized(v) for v in candidate_vars]) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:889: in run | |
run_metadata_ptr) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:1105: in _run | |
self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:427: in __init__ | |
self._assert_fetchable(graph, fetch.op) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
self = <tensorflow.python.client.session._FetchHandler object at 0x7f01440f8f98> | |
graph = <tensorflow.python.framework.ops.Graph object at 0x7f0148fbd9b0> | |
op = <tf.Operation 'IsVariableInitialized_5' type=IsVariableInitialized> | |
def _assert_fetchable(self, graph, op): | |
if not graph.is_fetchable(op): | |
raise ValueError( | |
> 'Operation %r has been marked as not fetchable.' % op.name) | |
E ValueError: Operation 'IsVariableInitialized_5' has been marked as not fetchable. | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:440: ValueError | |
______________________ test_inside_and_outside_weights_1 _______________________ | |
def test_inside_and_outside_weights_1(): | |
anchors = numpy.array( | |
[[30, 20, 50, 30], | |
[10, 15, 20, 25], | |
[ 5, 15, 20, 22]] | |
) | |
anchors = keras.backend.constant(anchors) | |
subsample = keras.backend.constant([1, 0, 1]) | |
positive_weight = -1.0 | |
proposed_inside_weights = [1.0, 0.5, 0.7, 1.0] | |
target_inside_weights = numpy.array( | |
[[1.0, 0.5, 0.7, 1.0], | |
[0.0, 0.0, 0.0, 0.0], | |
[1.0, 0.5, 0.7, 1.0]] | |
) | |
target_inside_weights = keras.backend.constant(target_inside_weights) | |
target_outside_weights = keras.backend.ones_like(anchors, dtype=keras.backend.floatx()) | |
target_outside_weights /= target_outside_weights | |
output_inside_weights, output_outside_weights = anchor_target.inside_and_outside_weights(anchors, subsample, positive_weight, proposed_inside_weights) | |
> target_inside_weights = keras.backend.eval(target_inside_weights) | |
tests/layers/object_detection/test_anchor_target.py:240: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:660: in eval | |
return to_dense(x).eval(session=get_session()) | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:189: in get_session | |
[tf.is_variable_initialized(v) for v in candidate_vars]) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:889: in run | |
run_metadata_ptr) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:1105: in _run | |
self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:427: in __init__ | |
self._assert_fetchable(graph, fetch.op) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
self = <tensorflow.python.client.session._FetchHandler object at 0x7f0144471e80> | |
graph = <tensorflow.python.framework.ops.Graph object at 0x7f0148fbd9b0> | |
op = <tf.Operation 'IsVariableInitialized_12' type=IsVariableInitialized> | |
def _assert_fetchable(self, graph, op): | |
if not graph.is_fetchable(op): | |
raise ValueError( | |
> 'Operation %r has been marked as not fetchable.' % op.name) | |
E ValueError: Operation 'IsVariableInitialized_12' has been marked as not fetchable. | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:440: ValueError | |
______________________ test_inside_and_outside_weights_2 _______________________ | |
def test_inside_and_outside_weights_2(): | |
anchors = numpy.array( | |
[[30, 20, 50, 30], | |
[10, 15, 20, 25], | |
[ 5, 15, 20, 22]] | |
) | |
anchors = keras.backend.constant(anchors) | |
subsample = keras.backend.constant([1, 0, 1]) | |
positive_weight = 0.6 | |
proposed_inside_weights = [1.0, 0.5, 0.7, 1.0] | |
target_inside_weights = numpy.array( | |
[[1.0, 0.5, 0.7, 1.0], | |
[0.0, 0.0, 0.0, 0.0], | |
[1.0, 0.5, 0.7, 1.0]] | |
) | |
target_inside_weights = keras.backend.constant(target_inside_weights) | |
target_outside_weights = numpy.array( | |
[[0.3, 0.3, 0.3, 0.3], | |
[0.4, 0.4, 0.4, 0.4], | |
[0.3, 0.3, 0.3, 0.3]] | |
) | |
target_outside_weights = keras.backend.constant(target_outside_weights) | |
output_inside_weights, output_outside_weights = anchor_target.inside_and_outside_weights(anchors, subsample, positive_weight, proposed_inside_weights) | |
> target_inside_weights = keras.backend.eval(target_inside_weights) | |
tests/layers/object_detection/test_anchor_target.py:284: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:660: in eval | |
return to_dense(x).eval(session=get_session()) | |
/home/morteza/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py:189: in get_session | |
[tf.is_variable_initialized(v) for v in candidate_vars]) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:889: in run | |
run_metadata_ptr) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:1105: in _run | |
self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles) | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:427: in __init__ | |
self._assert_fetchable(graph, fetch.op) | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
self = <tensorflow.python.client.session._FetchHandler object at 0x7f0144405940> | |
graph = <tensorflow.python.framework.ops.Graph object at 0x7f0148fbd9b0> | |
op = <tf.Operation 'IsVariableInitialized_19' type=IsVariableInitialized> | |
def _assert_fetchable(self, graph, op): | |
if not graph.is_fetchable(op): | |
raise ValueError( | |
> 'Operation %r has been marked as not fetchable.' % op.name) | |
E ValueError: Operation 'IsVariableInitialized_19' has been marked as not fetchable. | |
/home/morteza/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py:440: ValueError | |
=========================== 9 failed in 2.02 seconds =========================== |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment