-
-
Save mattjj/d15bd97770ab5e6553ab198f33d5f67e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import itertools as it | |
import jax | |
import jax.numpy as jnp | |
jax.config.update('jax_enable_x64', True) | |
jax.config.update('jax_platform_name', 'cpu') | |
L = num_stages = 5 | |
N = batch_size = 6 | |
M = num_microbatches = 2 | |
B = microbatch_size = 3 | |
assert N == M * B | |
F = num_feat = 3 | |
params = jax.random.normal(jax.random.PRNGKey(0), (L, F, F)) | |
inputs = jnp.arange(N * F).reshape(N, F) | |
def fn(params, inputs): | |
assert params.ndim == 2 and inputs.ndim == 1 | |
return jnp.tanh(jnp.dot(params, inputs)) | |
state = inputs | |
for i in range(L): | |
state = jax.vmap(fn, (None, 0))(params[i], state) | |
outputs = state | |
print(outputs) | |
def spmd_pipeline(fn, params, inputs): | |
inputs = jnp.pad(inputs[:, None], [[0, L-1], [0, L-1], [0, 0], [0, 0]]) | |
outputs = jnp.zeros((M+L-1, B, F)) | |
state = jnp.zeros([L, B, F]) | |
for i in range(M + L - 1): | |
state = shift_and_insert(state, inputs[i]) | |
state = jax.vmap(jax.vmap(fn, (None, 0)))(params, state) | |
outputs = outputs.at[i].set(state[-1]) # last layer output | |
return outputs[L-1:] | |
def shift_and_insert(arr, x): | |
padding = [[1, 0]] + [[0, 0]] * (arr.ndim - 1) | |
arr = jnp.pad(arr, padding)[:-1] | |
iota = jax.lax.broadcasted_iota('int32', arr.shape, 0) | |
return jnp.where(iota == 0, x, arr) | |
outputs2 = spmd_pipeline(fn, params, inputs.reshape(M, B, F)).reshape(N, F) | |
print(outputs2) |
Good point! I wondered about that, though I kind of assumed we had to add this extra dimension for GSPMD or something.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The implementation can be simplified with a one-liner
34: inputs = jnp.pad(inputs, [[0, L-1], [0, 0], [0, 0]])