-
-
Save mainambui/c803aaf857e54a5c9089ea05f91473bc to your computer and use it in GitHub Desktop.
Predicting model averaged clmm models to new data
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Arguments: | |
# - model = a clmm model | |
# - modelAvg = a clmm model average (object of class averaging) | |
# - newdata = a dataframe of new data to apply the model to | |
# Returns a dataframe of predicted probabilities for each row and response level | |
fake.predict.clmm <- function(modelAvg, newdata) { | |
# Actual prediction function | |
pred <- function(eta, theta, cat = 1:(length(theta) + 1), inv.link = plogis) { | |
Theta <- c(-1000, theta, 1000) | |
sapply(cat, function(j) inv.link(Theta[j + 1] - eta) - inv.link(Theta[j] - eta)) | |
} | |
# Multiply each row by the coefficients | |
#coefs <- c(model$beta, unlist(model$ST))##turn off if a model average is used | |
beta <- modelAvg$coefficients[2,3:12] | |
coefs <- c(beta, unlist(modelAvg$ST)) | |
xbetas <- sweep(newdata, MARGIN=2, coefs, `*`) | |
# Make predictions | |
Theta<-modelAvg$coefficients[2,1:2] | |
#pred.mat <- data.frame(pred(eta=rowSums(xbetas), theta=model$Theta)) | |
pred.mat <- data.frame(pred(eta=rowSums(xbetas), theta=Theta)) | |
#colnames(pred.mat) <- levels(model$model[,1]) | |
a<-attr(modelAvg, "modelList") | |
colnames(pred.mat) <- levels(a[[1]]$model[,1]) | |
pred.mat | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Feb 6 2016: modified the original by adding functionality to use model averaged coefficients