Created
March 10, 2023 00:33
-
-
Save lseongjoo/598fd7b19f4b6523146339fab1e4953b to your computer and use it in GitHub Desktop.
TensorFlow for Ubuntu 22.04 (+WSL 2)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# 파이썬 환경 생성 및 활성화 | |
conda create --name tf python=3.9 | |
conda activate tf | |
# CUDA+cuDNN 설치 및 설정 | |
conda install -c conda-forge cudatoolkit=11.2.2 cudnn=8.1.0 | |
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/ | |
mkdir -p $CONDA_PREFIX/etc/conda/activate.d | |
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh | |
# Ubuntu 22.04 이상에서 필요한 설치 및 설정 | |
# Install NVCC | |
conda install -c nvidia cuda-nvcc=11.3.58 | |
# Configure the XLA cuda directory | |
mkdir -p $CONDA_PREFIX/etc/conda/activate.d | |
printf 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/\nexport XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX/lib/\n' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh | |
source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh | |
# Copy libdevice file to the required path | |
mkdir -p $CONDA_PREFIX/lib/nvvm/libdevice | |
cp $CONDA_PREFIX/lib/libdevice.10.bc $CONDA_PREFIX/lib/nvvm/libdevice/ | |
pip install --upgrade pip | |
python3 -m pip install tensorflow |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment