Last active
February 6, 2018 23:31
CycleGAN pretrained
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
class ResnetBlock(nn.Module): | |
def __init__(self, dim): | |
super(ResnetBlock, self).__init__() | |
self.conv_block = self.build_conv_block(dim) | |
def build_conv_block(self, dim): | |
conv_block = [] | |
conv_block += [nn.ReflectionPad2d(1)] | |
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=0, bias=True), | |
nn.InstanceNorm2d(dim), | |
nn.ReLU(True)] | |
conv_block += [nn.ReflectionPad2d(1)] | |
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=0, bias=True), | |
nn.InstanceNorm2d(dim)] | |
return nn.Sequential(*conv_block) | |
def forward(self, x): | |
out = x + self.conv_block(x) | |
return out | |
class ResnetGenerator(nn.Module): | |
def __init__(self, input_nc, output_nc, ngf=64, n_blocks=6): | |
assert(n_blocks >= 0) | |
super(ResnetGenerator, self).__init__() | |
self.input_nc = input_nc | |
self.output_nc = output_nc | |
self.ngf = ngf | |
model = [nn.ReflectionPad2d(3), | |
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=True), | |
nn.InstanceNorm2d(ngf), | |
nn.ReLU(True)] | |
n_downsampling = 2 | |
for i in range(n_downsampling): | |
mult = 2**i | |
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, | |
stride=2, padding=1, bias=True), | |
nn.InstanceNorm2d(ngf * mult * 2), | |
nn.ReLU(True)] | |
mult = 2**n_downsampling | |
for i in range(n_blocks): | |
model += [ResnetBlock(ngf * mult)] | |
for i in range(n_downsampling): | |
mult = 2**(n_downsampling - i) | |
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), | |
kernel_size=3, stride=2, | |
padding=1, output_padding=1, | |
bias=True), | |
nn.InstanceNorm2d(int(ngf * mult / 2)), | |
nn.ReLU(True)] | |
model += [nn.ReflectionPad2d(3)] | |
model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] | |
model += [nn.Tanh()] | |
self.model = nn.Sequential(*model) | |
def forward(self, input): | |
return self.model(input) | |
if __name__ == '__main__': | |
from PIL import Image | |
from torchvision import transforms | |
import sys | |
model_path = sys.argv[1] | |
image_path = sys.argv[2] | |
input_nc = 3 | |
output_nc = 3 | |
ngf = 64 | |
n_blocks = 9 | |
netG = ResnetGenerator(input_nc, output_nc, ngf, n_blocks=n_blocks) | |
netG.load_state_dict(torch.load(model_path)) | |
netG.eval() | |
preprocess = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.ToTensor(), | |
]) | |
img = Image.open(image_path) | |
img_t = preprocess(img) | |
input = torch.autograd.Variable(torch.unsqueeze(img_t, 0)) | |
out = netG(input) | |
out_t = (out.data.squeeze() + 1.0) / 2.0 | |
out_img = transforms.ToPILImage()(out_t) | |
out_img.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment