Skip to content

Instantly share code, notes, and snippets.

@kun432
Created November 17, 2024 09:14
Show Gist options
  • Save kun432/37cf7a2136e1613a7712354657bb4dee to your computer and use it in GitHub Desktop.
Save kun432/37cf7a2136e1613a7712354657bb4dee to your computer and use it in GitHub Desktop.
TrustGraph-v0.15.5向けに修正したdocker-compose.yaml
services:
chunker:
command:
- chunker-recursive
- -p
- pulsar://pulsar:6650
- --chunk-size
- '1000'
- --chunk-overlap
- '200'
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
embeddings:
command:
- embeddings-hf
- -p
- pulsar://pulsar:6650
- -m
- all-MiniLM-L6-v2
deploy:
resources:
limits:
cpus: '1.0'
memory: 400M
reservations:
cpus: '0.5'
memory: 400M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
grafana:
deploy:
resources:
limits:
cpus: '1.0'
memory: 256M
reservations:
cpus: '0.5'
memory: 256M
environment:
GF_ORG_NAME: trustgraph.ai
image: docker.io/grafana/grafana:11.1.4
ports:
- 3000:3000
restart: on-failure:100
volumes:
- grafana-storage:/var/lib/grafana
- ./grafana/provisioning/:/etc/grafana/provisioning/dashboards/
- ./grafana/provisioning/:/etc/grafana/provisioning/datasources/
- ./grafana/dashboards/:/var/lib/grafana/dashboards/
graph-rag:
command:
- graph-rag
- -p
- pulsar://pulsar:6650
- --prompt-request-queue
- non-persistent://tg/request/prompt-rag
- --prompt-response-queue
- non-persistent://tg/response/prompt-rag-response
- --entity-limit
- '50'
- --triple-limit
- '30'
- --max-subgraph-size
- '3000'
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
init-pulsar:
command:
- tg-init-pulsar
- -p
- http://pulsar:8080
deploy:
resources:
limits:
cpus: '1'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
kg-extract-definitions:
command:
- kg-extract-definitions
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
kg-extract-relationships:
command:
- kg-extract-relationships
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
kg-extract-topics:
command:
- kg-extract-topics
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
metering:
command:
- metering
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
metering-rag:
command:
- metering
- -p
- pulsar://pulsar:6650
- -i
- non-persistent://tg/response/text-completion-rag-response
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
neo4j:
deploy:
resources:
limits:
cpus: '1.0'
memory: 768M
reservations:
cpus: '0.5'
memory: 768M
environment:
NEO4J_AUTH: neo4j/password
image: docker.io/neo4j:5.22.0-community-bullseye
ports:
- 7474:7474
- 7687:7687
restart: on-failure:100
volumes:
- neo4j:/data
pdf-decoder:
command:
- pdf-decoder
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
prometheus:
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/prom/prometheus:v2.53.2
ports:
- 9090:9090
restart: on-failure:100
volumes:
- ./prometheus:/etc/prometheus/
- prometheus-data:/prometheus
prompt:
command:
- prompt-template
- -p
- pulsar://pulsar:6650
- --text-completion-request-queue
- non-persistent://tg/request/text-completion
- --text-completion-response-queue
- non-persistent://tg/response/text-completion-response
- --system-prompt
- "\u3042\u306A\u305F\u306F\u3001\u89AA\u5207\u306A\u65E5\u672C\u8A9E\u306E\u30A2\
\u30B7\u30B9\u30BF\u30F3\u30C8\u3067\u3059\u3002\u3042\u306A\u305F\u306E\u4ED5\
\u4E8B\u306F\u3001NLP\uFF08\u81EA\u7136\u8A00\u8A9E\u51E6\u7406\uFF09\u306E\u30BF\
\u30B9\u30AF\u3092\u3053\u306A\u3059\u3053\u3068\u3067\u3059\u3002\n"
- --prompt
- "agent-react=Answer the following questions as best you can. You have\naccess\
\ to the following functions:\n\n{% for tool in tools %}{\n \"function\"\
: \"{{ tool.name }}\",\n \"description\": \"{{ tool.description }}\",\n \
\ \"arguments\": [\n{% for arg in tool.arguments %} {\n \
\ \"name\": \"{{ arg.name }}\",\n \"type\": \"{{ arg.type }}\",\n\
\ \"description\": \"{{ arg.description }}\",\n }\n{% endfor\
\ %}\n ]\n}\n{% endfor %}\n\nYou can either choose to call a function to\
\ get more information, or\nreturn a final answer.\n \nTo call a function,\
\ respond with a JSON object of the following format:\n\n{\n \"thought\"\
: \"your thought about what to do\",\n \"action\": \"the action to take,\
\ should be one of [{{tool_names}}]\",\n \"arguments\": {\n \"argument1\"\
: \"argument_value\",\n \"argument2\": \"argument_value\"\n }\n}\n\
\nTo provide a final answer, response a JSON object of the following format:\n\
\n{\n \"thought\": \"I now know the final answer\",\n \"final-answer\": \"\
the final answer to the original input question\"\n}\n\nPrevious steps are included\
\ in the input. Each step has the following\nformat in your output:\n\n{\n\
\ \"thought\": \"your thought about what to do\",\n \"action\": \"the action\
\ taken\",\n \"arguments\": {\n \"argument1\": action argument,\n \
\ \"argument2\": action argument2\n },\n \"observation\": \"the result of\
\ the action\",\n}\n\nRespond by describing either one single thought/action/arguments\
\ or\nthe final-answer. Pause after providing one action or final-answer.\n\
\n{% if context %}Additional context has been provided:\n{{context}}{% endif\
\ %}\n\nQuestion: {{question}}\n\nInput:\n \n{% for h in history %}\n{\n\
\ \"action\": \"{{h.action}}\",\n \"arguments\": [\n{% for k, v in h.arguments.items()\
\ %} {\n \"{{k}}\": \"{{v}}\",\n{%endfor%} }\n ],\n\
\ \"observation\": \"{{h.observation}}\"\n}\n{% endfor %}"
- 'document-prompt=Study the following context. Use only the information provided
in the context in your response. Do not speculate if the answer is not found
in the provided set of knowledge statements.
Here is the context:
{{documents}}
Use only the provided knowledge statements to respond to the following:
{{query}}
'
- 'extract-definitions=<instructions>
Study the following text and derive definitions for any discovered entities.
Do not provide definitions for entities whose definitions are incomplete
or unknown.
Output relationships in JSON format as an arary of objects with fields:
- entity: the name of the entity
- definition: English text which defines the entity
</instructions>
<text>
{{text}}
</text>
<requirements>
You will respond only with raw JSON format data. Do not provide
explanations. Do not use special characters in the abstract text. The
abstract will be written as plain text. Do not add markdown formatting
or headers or prefixes. Do not include null or unknown definitions.
</requirements>'
- 'extract-relationships=<instructions>
Study the following text and derive entity relationships. For each
relationship, derive the subject, predicate and object of the relationship.
Output relationships in JSON format as an arary of objects with fields:
- subject: the subject of the relationship
- predicate: the predicate
- object: the object of the relationship
- object-entity: false if the object is a simple data type: name, value or date. true
if it is an entity.
</instructions>
<text>
{{text}}
</text>
<requirements>
You will respond only with raw JSON format data. Do not provide
explanations. Do not use special characters in the abstract text. The
abstract must be written as plain text. Do not add markdown formatting
or headers or prefixes.
</requirements>'
- 'extract-rows=<instructions>
Study the following text and derive objects which match the schema provided.
You must output an array of JSON objects for each object you discover
which matches the schema. For each object, output a JSON object whose fields
carry the name field specified in the schema.
</instructions>
<schema>
{{schema}}
</schema>
<text>
{{text}}
</text>
<requirements>
You will respond only with raw JSON format data. Do not provide
explanations. Do not add markdown formatting or headers or prefixes.
</requirements>'
- "extract-topics=You are a helpful assistant that performs information extraction\
\ tasks for a provided text.\nRead the provided text. You will identify topics\
\ and their definitions in JSON.\n\nReading Instructions:\n- Ignore document\
\ formatting in the provided text.\n- Study the provided text carefully.\n\n\
Here is the text:\n{{text}}\n\nResponse Instructions: \n- Do not respond with\
\ special characters.\n- Return only topics that are concepts and unique to\
\ the provided text.\n- Respond only with well-formed JSON.\n- The JSON response\
\ shall be an array of objects with keys \"topic\" and \"definition\". \n- The\
\ JSON response shall use the following structure:\n\n```json\n[{\"topic\":\
\ string, \"definition\": string}]\n```\n\n- Do not write any additional text\
\ or explanations."
- 'kg-prompt=Study the following set of knowledge statements. The statements are
written in Cypher format that has been extracted from a knowledge graph. Use
only the provided set of knowledge statements in your response. Do not speculate
if the answer is not found in the provided set of knowledge statements.
Here''s the knowledge statements:
{% for edge in knowledge %}({{edge.s}})-[{{edge.p}}]->({{edge.o}})
{%endfor%}
Use only the provided knowledge statements to respond to the following:
{{query}}
'
- question={{question}}
- --prompt-response-type
- agent-react=json
- document-prompt=text
- extract-definitions=json
- extract-relationships=json
- extract-rows=json
- extract-topics=json
- kg-prompt=text
- --prompt-schema
- extract-definitions={"items":{"properties":{"definition":{"type":"string"},"entity":{"type":"string"}},"required":["entity","definition"],"type":"object"},"type":"array"}
- extract-relationships={"items":{"properties":{"object":{"type":"string"},"object-entity":{"type":"boolean"},"predicate":{"type":"string"},"subject":{"type":"string"}},"required":["subject","predicate","object","object-entity"],"type":"object"},"type":"array"}
- extract-topics={"items":{"properties":{"definition":{"type":"string"},"topic":{"type":"string"}},"required":["topic","definition"],"type":"object"},"type":"array"}
- --prompt-term
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
prompt-rag:
command:
- prompt-template
- -p
- pulsar://pulsar:6650
- -i
- non-persistent://tg/request/prompt-rag
- -o
- non-persistent://tg/response/prompt-rag-response
- --text-completion-request-queue
- non-persistent://tg/request/text-completion-rag
- --text-completion-response-queue
- non-persistent://tg/response/text-completion-rag-response
- --system-prompt
- "\u3042\u306A\u305F\u306F\u3001\u89AA\u5207\u306A\u65E5\u672C\u8A9E\u306E\u30A2\
\u30B7\u30B9\u30BF\u30F3\u30C8\u3067\u3059\u3002\u3042\u306A\u305F\u306E\u4ED5\
\u4E8B\u306F\u3001NLP\uFF08\u81EA\u7136\u8A00\u8A9E\u51E6\u7406\uFF09\u306E\u30BF\
\u30B9\u30AF\u3092\u3053\u306A\u3059\u3053\u3068\u3067\u3059\u3002\n"
- --prompt
- "agent-react=Answer the following questions as best you can. You have\naccess\
\ to the following functions:\n\n{% for tool in tools %}{\n \"function\"\
: \"{{ tool.name }}\",\n \"description\": \"{{ tool.description }}\",\n \
\ \"arguments\": [\n{% for arg in tool.arguments %} {\n \
\ \"name\": \"{{ arg.name }}\",\n \"type\": \"{{ arg.type }}\",\n\
\ \"description\": \"{{ arg.description }}\",\n }\n{% endfor\
\ %}\n ]\n}\n{% endfor %}\n\nYou can either choose to call a function to\
\ get more information, or\nreturn a final answer.\n \nTo call a function,\
\ respond with a JSON object of the following format:\n\n{\n \"thought\"\
: \"your thought about what to do\",\n \"action\": \"the action to take,\
\ should be one of [{{tool_names}}]\",\n \"arguments\": {\n \"argument1\"\
: \"argument_value\",\n \"argument2\": \"argument_value\"\n }\n}\n\
\nTo provide a final answer, response a JSON object of the following format:\n\
\n{\n \"thought\": \"I now know the final answer\",\n \"final-answer\": \"\
the final answer to the original input question\"\n}\n\nPrevious steps are included\
\ in the input. Each step has the following\nformat in your output:\n\n{\n\
\ \"thought\": \"your thought about what to do\",\n \"action\": \"the action\
\ taken\",\n \"arguments\": {\n \"argument1\": action argument,\n \
\ \"argument2\": action argument2\n },\n \"observation\": \"the result of\
\ the action\",\n}\n\nRespond by describing either one single thought/action/arguments\
\ or\nthe final-answer. Pause after providing one action or final-answer.\n\
\n{% if context %}Additional context has been provided:\n{{context}}{% endif\
\ %}\n\nQuestion: {{question}}\n\nInput:\n \n{% for h in history %}\n{\n\
\ \"action\": \"{{h.action}}\",\n \"arguments\": [\n{% for k, v in h.arguments.items()\
\ %} {\n \"{{k}}\": \"{{v}}\",\n{%endfor%} }\n ],\n\
\ \"observation\": \"{{h.observation}}\"\n}\n{% endfor %}"
- 'document-prompt=Study the following context. Use only the information provided
in the context in your response. Do not speculate if the answer is not found
in the provided set of knowledge statements.
Here is the context:
{{documents}}
Use only the provided knowledge statements to respond to the following:
{{query}}
'
- 'extract-definitions=<instructions>
Study the following text and derive definitions for any discovered entities.
Do not provide definitions for entities whose definitions are incomplete
or unknown.
Output relationships in JSON format as an arary of objects with fields:
- entity: the name of the entity
- definition: English text which defines the entity
</instructions>
<text>
{{text}}
</text>
<requirements>
You will respond only with raw JSON format data. Do not provide
explanations. Do not use special characters in the abstract text. The
abstract will be written as plain text. Do not add markdown formatting
or headers or prefixes. Do not include null or unknown definitions.
</requirements>'
- 'extract-relationships=<instructions>
Study the following text and derive entity relationships. For each
relationship, derive the subject, predicate and object of the relationship.
Output relationships in JSON format as an arary of objects with fields:
- subject: the subject of the relationship
- predicate: the predicate
- object: the object of the relationship
- object-entity: false if the object is a simple data type: name, value or date. true
if it is an entity.
</instructions>
<text>
{{text}}
</text>
<requirements>
You will respond only with raw JSON format data. Do not provide
explanations. Do not use special characters in the abstract text. The
abstract must be written as plain text. Do not add markdown formatting
or headers or prefixes.
</requirements>'
- 'extract-rows=<instructions>
Study the following text and derive objects which match the schema provided.
You must output an array of JSON objects for each object you discover
which matches the schema. For each object, output a JSON object whose fields
carry the name field specified in the schema.
</instructions>
<schema>
{{schema}}
</schema>
<text>
{{text}}
</text>
<requirements>
You will respond only with raw JSON format data. Do not provide
explanations. Do not add markdown formatting or headers or prefixes.
</requirements>'
- "extract-topics=You are a helpful assistant that performs information extraction\
\ tasks for a provided text.\nRead the provided text. You will identify topics\
\ and their definitions in JSON.\n\nReading Instructions:\n- Ignore document\
\ formatting in the provided text.\n- Study the provided text carefully.\n\n\
Here is the text:\n{{text}}\n\nResponse Instructions: \n- Do not respond with\
\ special characters.\n- Return only topics that are concepts and unique to\
\ the provided text.\n- Respond only with well-formed JSON.\n- The JSON response\
\ shall be an array of objects with keys \"topic\" and \"definition\". \n- The\
\ JSON response shall use the following structure:\n\n```json\n[{\"topic\":\
\ string, \"definition\": string}]\n```\n\n- Do not write any additional text\
\ or explanations."
- 'kg-prompt=Study the following set of knowledge statements. The statements are
written in Cypher format that has been extracted from a knowledge graph. Use
only the provided set of knowledge statements in your response. Do not speculate
if the answer is not found in the provided set of knowledge statements.
Here''s the knowledge statements:
{% for edge in knowledge %}({{edge.s}})-[{{edge.p}}]->({{edge.o}})
{%endfor%}
Use only the provided knowledge statements to respond to the following:
{{query}}
'
- question={{question}}
- --prompt-response-type
- agent-react=json
- document-prompt=text
- extract-definitions=json
- extract-relationships=json
- extract-rows=json
- extract-topics=json
- kg-prompt=text
- --prompt-schema
- extract-definitions={"items":{"properties":{"definition":{"type":"string"},"entity":{"type":"string"}},"required":["entity","definition"],"type":"object"},"type":"array"}
- extract-relationships={"items":{"properties":{"object":{"type":"string"},"object-entity":{"type":"boolean"},"predicate":{"type":"string"},"subject":{"type":"string"}},"required":["subject","predicate","object","object-entity"],"type":"object"},"type":"array"}
- extract-topics={"items":{"properties":{"definition":{"type":"string"},"topic":{"type":"string"}},"required":["topic","definition"],"type":"object"},"type":"array"}
- --prompt-term
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
pulsar:
command:
- bin/pulsar
- standalone
deploy:
resources:
limits:
cpus: '2.0'
memory: 1500M
reservations:
cpus: '1.0'
memory: 1500M
environment:
PULSAR_MEM: -Xms600M -Xmx600M
image: docker.io/apachepulsar/pulsar:3.3.1
ports:
- 6650:6650
- 8080:8080
restart: on-failure:100
volumes:
- pulsar-data:/pulsar/data
qdrant:
deploy:
resources:
limits:
cpus: '1.0'
memory: 1024M
reservations:
cpus: '0.5'
memory: 1024M
image: docker.io/qdrant/qdrant:v1.11.1
ports:
- 6333:6333
- 6334:6334
restart: on-failure:100
volumes:
- qdrant:/qdrant/storage
query-doc-embeddings:
command:
- de-query-qdrant
- -p
- pulsar://pulsar:6650
- -t
- http://qdrant:6333
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
query-graph-embeddings:
command:
- ge-query-qdrant
- -p
- pulsar://pulsar:6650
- -t
- http://qdrant:6333
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
query-triples:
command:
- triples-query-neo4j
- -p
- pulsar://pulsar:6650
- -g
- bolt://neo4j:7687
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
store-doc-embeddings:
command:
- de-write-qdrant
- -p
- pulsar://pulsar:6650
- -t
- http://qdrant:6333
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
store-graph-embeddings:
command:
- ge-write-qdrant
- -p
- pulsar://pulsar:6650
- -t
- http://qdrant:6333
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
store-triples:
command:
- triples-write-neo4j
- -p
- pulsar://pulsar:6650
- -g
- bolt://neo4j:7687
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
text-completion:
command:
- text-completion-openai
- -p
- pulsar://pulsar:6650
- -x
- '4096'
- -t
- '0.300'
- -m
- gpt-4o-mini
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
environment:
OPENAI_TOKEN: ${OPENAI_TOKEN}
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
text-completion-rag:
command:
- text-completion-openai
- -p
- pulsar://pulsar:6650
- -x
- '4096'
- -t
- '0.000'
- -m
- gpt-4o-mini
- -i
- non-persistent://tg/request/text-completion-rag
- -o
- non-persistent://tg/response/text-completion-rag-response
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
environment:
OPENAI_TOKEN: ${OPENAI_TOKEN}
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
vectorize:
command:
- embeddings-vectorize
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '1.0'
memory: 512M
reservations:
cpus: '0.5'
memory: 512M
image: docker.io/trustgraph/trustgraph-flow:0.15.5
restart: on-failure:100
volumes:
grafana-storage: {}
neo4j: {}
prometheus-data: {}
pulsar-data: {}
qdrant: {}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment