Last active
April 21, 2025 13:14
-
-
Save kumanna/dd1dd59de394bfa868f0d8a75e90b12d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
def get_dominant_paths(Y_DD): | |
threshold = 0.1 * np.max(np.abs(Y_DD)) | |
M, N = Y_DD.shape | |
K_list = [] | |
for l in range(M): | |
k = int(np.argmax(Y_DD[l, :])) | |
K_list.append((int(l), k)) | |
K_list = list(set(K_list)) | |
K_list_onlyks = {i[1] for i in K_list} | |
L_set = set() | |
for k in K_list_onlyks: | |
L_set = L_set.union(set(np.argwhere(np.abs(Y_DD[:,k]) > threshold).flatten())) | |
#L_list = list(set(L_list)) | |
LK_set = set() | |
for l in L_set: | |
k = int(np.argmax(Y_DD[l, :])) | |
LK_set = LK_set.union({(l, k)}) | |
LK_set = {(i[0], i[1]) for i in LK_set if np.abs(Y_DD[i[0], i[1]]) > threshold} | |
return LK_set | |
M = 4 | |
N = 4 | |
# Fixed negative sign | |
gen_fourier_matrix = lambda N : np.exp(-1j * 2 * np.pi / N * np.outer(np.arange(N), np.arange(N))) / np.sqrt(N) | |
#symbols = (np.sign(np.random.randn(M, N)) + 1j * np.sign(np.random.randn(M, N))) / np.sqrt(2) | |
symbols = np.zeros((M, N), dtype='complex') | |
symbols[0,0] = 1 | |
FM = gen_fourier_matrix(M) | |
FN = gen_fourier_matrix(N) | |
x_DD = symbols.reshape((-1, 1)).flatten() | |
X_TF = FM @ symbols @ FN.T.conj() | |
# Without channel | |
Y_DD = FM.T.conj() @ X_TF @ FN | |
assert np.max(np.abs(symbols - Y_DD)) < 1e-8 | |
GAMMA = lambda li : np.diag(np.exp(-1j * 2 * np.pi * li / M * np.arange(M))) | |
DELTA = lambda ki : np.diag(np.exp(1j * 2 * np.pi * ki / N * np.arange(N))) | |
channel_coeffs = [(1+0j, -1, -1), (0.4j, -2, -2)] | |
#channel_coeffs = [(1+0j, 0, 0)] | |
H_DD = np.zeros((M*N, M*N), dtype='complex') | |
for i in channel_coeffs: | |
hi, li, ki = i | |
H_DD = H_DD + hi * np.exp(-1j * li / M * ki / N) * np.kron(FM.T.conj() @ GAMMA(li) @ FM, FN @ DELTA(ki) @ FN.T.conj()) | |
y_DD = H_DD @ x_DD | |
x_DD_hat = np.linalg.solve(H_DD, y_DD) | |
X_DD_hat = x_DD_hat.reshape(M, N) | |
assert np.max(np.abs(symbols - X_DD_hat)) < 1e-8 | |
Y_DD = y_DD.reshape(M, N) | |
LK_set = get_dominant_paths(Y_DD) | |
print("Y_DD\n") | |
print("LK_set:\n", LK_set) | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
sns.set(style="whitegrid") | |
#threshold = 0.6 | |
#Y_masked = np.where(np.round(Y_DD, 3) > threshold, np.round(Y_DD, 3), 0) | |
plt.figure(figsize=(8, 6)) | |
ax = sns.heatmap(np.round(np.abs(Y_DD),3), cmap="viridis", cbar=True) | |
for (l, k) in LK_set: | |
rect = plt.Rectangle((k, l), 1, 1, fill=False, edgecolor='red', linewidth=2) | |
ax.add_patch(rect) | |
plt.title("Y_DD Matrix (Heatmap of Values)", fontsize=14) | |
plt.xlabel("Doppler Index") | |
plt.ylabel("Delay Index") | |
plt.tight_layout() | |
plt.show() | |
#plt.savefig("Y_DD_dominant_paths_all_vals.png", dpi=300) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment