Forked from danijar/blog_tensorflow_variational_auto_encoder.py
Created
August 22, 2019 22:46
-
-
Save kristofgiber/500a8fe8b09c91000f062df35b965aba to your computer and use it in GitHub Desktop.
TensorFlow Variational Auto-Encoder
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Full example for my blog post at: | |
# https://danijar.com/building-variational-auto-encoders-in-tensorflow/ | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import tensorflow as tf | |
from tensorflow.examples.tutorials.mnist import input_data | |
tfd = tf.contrib.distributions | |
def make_encoder(data, code_size): | |
x = tf.layers.flatten(data) | |
x = tf.layers.dense(x, 200, tf.nn.relu) | |
x = tf.layers.dense(x, 200, tf.nn.relu) | |
loc = tf.layers.dense(x, code_size) | |
scale = tf.layers.dense(x, code_size, tf.nn.softplus) | |
return tfd.MultivariateNormalDiag(loc, scale) | |
def make_prior(code_size): | |
loc = tf.zeros(code_size) | |
scale = tf.ones(code_size) | |
return tfd.MultivariateNormalDiag(loc, scale) | |
def make_decoder(code, data_shape): | |
x = code | |
x = tf.layers.dense(x, 200, tf.nn.relu) | |
x = tf.layers.dense(x, 200, tf.nn.relu) | |
logit = tf.layers.dense(x, np.prod(data_shape)) | |
logit = tf.reshape(logit, [-1] + data_shape) | |
return tfd.Independent(tfd.Bernoulli(logit), 2) | |
def plot_codes(ax, codes, labels): | |
ax.scatter(codes[:, 0], codes[:, 1], s=2, c=labels, alpha=0.1) | |
ax.set_aspect('equal') | |
ax.set_xlim(codes.min() - .1, codes.max() + .1) | |
ax.set_ylim(codes.min() - .1, codes.max() + .1) | |
ax.tick_params( | |
axis='both', which='both', left='off', bottom='off', | |
labelleft='off', labelbottom='off') | |
def plot_samples(ax, samples): | |
for index, sample in enumerate(samples): | |
ax[index].imshow(sample, cmap='gray') | |
ax[index].axis('off') | |
data = tf.placeholder(tf.float32, [None, 28, 28]) | |
make_encoder = tf.make_template('encoder', make_encoder) | |
make_decoder = tf.make_template('decoder', make_decoder) | |
# Define the model. | |
prior = make_prior(code_size=2) | |
posterior = make_encoder(data, code_size=2) | |
code = posterior.sample() | |
# Define the loss. | |
likelihood = make_decoder(code, [28, 28]).log_prob(data) | |
divergence = tfd.kl_divergence(posterior, prior) | |
elbo = tf.reduce_mean(likelihood - divergence) | |
optimize = tf.train.AdamOptimizer(0.001).minimize(-elbo) | |
samples = make_decoder(prior.sample(10), [28, 28]).mean() | |
mnist = input_data.read_data_sets('MNIST_data/') | |
fig, ax = plt.subplots(nrows=20, ncols=11, figsize=(10, 20)) | |
with tf.train.MonitoredSession() as sess: | |
for epoch in range(20): | |
feed = {data: mnist.test.images.reshape([-1, 28, 28])} | |
test_elbo, test_codes, test_samples = sess.run([elbo, code, samples], feed) | |
print('Epoch', epoch, 'elbo', test_elbo) | |
ax[epoch, 0].set_ylabel('Epoch {}'.format(epoch)) | |
plot_codes(ax[epoch, 0], test_codes, mnist.test.labels) | |
plot_samples(ax[epoch, 1:], test_samples) | |
for _ in range(600): | |
feed = {data: mnist.train.next_batch(100)[0].reshape([-1, 28, 28])} | |
sess.run(optimize, feed) | |
plt.savefig('vae-mnist.png', dpi=300, transparent=True, bbox_inches='tight') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment