Created
September 13, 2021 16:47
-
-
Save kohyuk91/ce27f8a2783bcbcc2c1f0cc72bfe9047 to your computer and use it in GitHub Desktop.
'Mesh from Points' for Maya
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
# original script | |
# https://github.com/domlysz/BlenderGIS/blob/master/operators/utils/delaunay_voronoi.py | |
# - 2021.09.14 modified by Hyuk Ko ([email protected]) | |
# USAGE | |
# 1. Grab 3 or more transform nodes. (Locators usually...) | |
# 2. Select a projection camera. | |
# 3. Press 'RUN' button. | |
############################################################################# | |
# | |
# Voronoi diagram calculator/ Delaunay triangulator | |
# | |
# - Voronoi Diagram Sweepline algorithm and C code by Steven Fortune, 1987, http://ect.bell-labs.com/who/sjf/ | |
# - Python translation to file voronoi.py by Bill Simons, 2005, http://www.oxfish.com/ | |
# - Additional changes for QGIS by Carson Farmer added November 2010 | |
# - 2012 Ported to Python 3 and additional clip functions by domlysz at gmail.com | |
# | |
# Calculate Delaunay triangulation or the Voronoi polygons for a set of | |
# 2D input points. | |
# | |
# Derived from code bearing the following notice: | |
# | |
# The author of this software is Steven Fortune. Copyright (c) 1994 by AT&T | |
# Bell Laboratories. | |
# Permission to use, copy, modify, and distribute this software for any | |
# purpose without fee is hereby granted, provided that this entire notice | |
# is included in all copies of any software which is or includes a copy | |
# or modification of this software and in all copies of the supporting | |
# documentation for such software. | |
# THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED | |
# WARRANTY. IN PARTICULAR, NEITHER THE AUTHORS NOR AT&T MAKE ANY | |
# REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY | |
# OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. | |
# | |
# Comments were incorporated from Shane O'Sullivan's translation of the | |
# original code into C++ (http://mapviewer.skynet.ie/voronoi.html) | |
# | |
# Steve Fortune's homepage: http://netlib.bell-labs.com/cm/cs/who/sjf/index.html | |
# | |
# | |
# | |
# For programmatic use two functions are available: | |
# | |
# computeVoronoiDiagram(points, xBuff, yBuff, polygonsOutput=False, formatOutput=False) : | |
# Takes : | |
# - a list of point objects (which must have x and y fields). | |
# - x and y buffer values which are the expansion percentages of the bounding box rectangle including all input points. | |
# Returns : | |
# - With default options : | |
# A list of 2-tuples, representing the two points of each Voronoi diagram edge. | |
# Each point contains 2-tuples which are the x,y coordinates of point. | |
# if formatOutput is True, returns : | |
# - a list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices. | |
# - and a list of 2-tuples (v1, v2) representing edges of the Voronoi diagram. | |
# v1 and v2 are the indices of the vertices at the end of the edge. | |
# - If polygonsOutput option is True, returns : | |
# A dictionary of polygons, keys are the indices of the input points, | |
# values contains n-tuples representing the n points of each Voronoi diagram polygon. | |
# Each point contains 2-tuples which are the x,y coordinates of point. | |
# if formatOutput is True, returns : | |
# - A list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices. | |
# - and a dictionary of input points indices. Values contains n-tuples representing the n points of each Voronoi diagram polygon. | |
# Each tuple contains the vertex indices of the polygon vertices. | |
# | |
# computeDelaunayTriangulation(points): | |
# Takes a list of point objects (which must have x and y fields). | |
# Returns a list of 3-tuples: the indices of the points that form a Delaunay triangle. | |
# | |
############################################################################# | |
import math | |
import sys | |
import getopt | |
TOLERANCE = 1e-9 | |
BIG_FLOAT = 1e38 | |
if sys.version > '3': | |
PY3 = True | |
else: | |
PY3 = False | |
#------------------------------------------------------------------ | |
class Context(object): | |
def __init__(self): | |
self.doPrint = 0 | |
self.debug = 0 | |
self.extent=()#tuple (xmin, xmax, ymin, ymax) | |
self.triangulate = False | |
self.vertices = [] # list of vertex 2-tuples: (x,y) | |
self.lines = [] # equation of line 3-tuple (a b c), for the equation of the line a*x+b*y = c | |
self.edges = [] # edge 3-tuple: (line index, vertex 1 index, vertex 2 index) if either vertex index is -1, the edge extends to infinity | |
self.triangles = [] # 3-tuple of vertex indices | |
self.polygons = {} # a dict of site:[edges] pairs | |
########Clip functions######## | |
def getClipEdges(self): | |
xmin, xmax, ymin, ymax = self.extent | |
clipEdges=[] | |
for edge in self.edges: | |
equation=self.lines[edge[0]]#line equation | |
if edge[1]!=-1 and edge[2]!=-1:#finite line | |
x1, y1=self.vertices[edge[1]][0], self.vertices[edge[1]][1] | |
x2, y2=self.vertices[edge[2]][0], self.vertices[edge[2]][1] | |
pt1, pt2 = (x1,y1), (x2,y2) | |
inExtentP1, inExtentP2 = self.inExtent(x1,y1), self.inExtent(x2,y2) | |
if inExtentP1 and inExtentP2: | |
clipEdges.append((pt1, pt2)) | |
elif inExtentP1 and not inExtentP2: | |
pt2=self.clipLine(x1, y1, equation, leftDir=False) | |
clipEdges.append((pt1, pt2)) | |
elif not inExtentP1 and inExtentP2: | |
pt1=self.clipLine(x2, y2, equation, leftDir=True) | |
clipEdges.append((pt1, pt2)) | |
else:#infinite line | |
if edge[1]!=-1: | |
x1, y1 = self.vertices[edge[1]][0], self.vertices[edge[1]][1] | |
leftDir=False | |
else: | |
x1, y1 = self.vertices[edge[2]][0], self.vertices[edge[2]][1] | |
leftDir=True | |
if self.inExtent(x1,y1): | |
pt1=(x1,y1) | |
pt2=self.clipLine(x1, y1, equation, leftDir) | |
clipEdges.append((pt1, pt2)) | |
return clipEdges | |
def getClipPolygons(self, closePoly): | |
xmin, xmax, ymin, ymax = self.extent | |
poly={} | |
for inPtsIdx, edges in self.polygons.items(): | |
clipEdges=[] | |
for edge in edges: | |
equation=self.lines[edge[0]]#line equation | |
if edge[1]!=-1 and edge[2]!=-1:#finite line | |
x1, y1=self.vertices[edge[1]][0], self.vertices[edge[1]][1] | |
x2, y2=self.vertices[edge[2]][0], self.vertices[edge[2]][1] | |
pt1, pt2 = (x1,y1), (x2,y2) | |
inExtentP1, inExtentP2 = self.inExtent(x1,y1), self.inExtent(x2,y2) | |
if inExtentP1 and inExtentP2: | |
clipEdges.append((pt1, pt2)) | |
elif inExtentP1 and not inExtentP2: | |
pt2=self.clipLine(x1, y1, equation, leftDir=False) | |
clipEdges.append((pt1, pt2)) | |
elif not inExtentP1 and inExtentP2: | |
pt1=self.clipLine(x2, y2, equation, leftDir=True) | |
clipEdges.append((pt1, pt2)) | |
else:#infinite line | |
if edge[1]!=-1: | |
x1, y1 = self.vertices[edge[1]][0], self.vertices[edge[1]][1] | |
leftDir=False | |
else: | |
x1, y1 = self.vertices[edge[2]][0], self.vertices[edge[2]][1] | |
leftDir=True | |
if self.inExtent(x1,y1): | |
pt1=(x1,y1) | |
pt2=self.clipLine(x1, y1, equation, leftDir) | |
clipEdges.append((pt1, pt2)) | |
#create polygon definition from edges and check if polygon is completely closed | |
polyPts, complete=self.orderPts(clipEdges) | |
if not complete: | |
startPt=polyPts[0] | |
endPt=polyPts[-1] | |
if startPt[0]==endPt[0] or startPt[1]==endPt[1]: #if start & end points are collinear then they are along an extent border | |
polyPts.append(polyPts[0])#simple close | |
else:#close at extent corner | |
if (startPt[0]==xmin and endPt[1]==ymax) or (endPt[0]==xmin and startPt[1]==ymax): #upper left | |
polyPts.append((xmin, ymax))#corner point | |
polyPts.append(polyPts[0])#close polygon | |
if (startPt[0]==xmax and endPt[1]==ymax) or (endPt[0]==xmax and startPt[1]==ymax): #upper right | |
polyPts.append((xmax, ymax)) | |
polyPts.append(polyPts[0]) | |
if (startPt[0]==xmax and endPt[1]==ymin) or (endPt[0]==xmax and startPt[1]==ymin): #bottom right | |
polyPts.append((xmax, ymin)) | |
polyPts.append(polyPts[0]) | |
if (startPt[0]==xmin and endPt[1]==ymin) or (endPt[0]==xmin and startPt[1]==ymin): #bottom left | |
polyPts.append((xmin, ymin)) | |
polyPts.append(polyPts[0]) | |
if not closePoly:#unclose polygon | |
polyPts=polyPts[:-1] | |
poly[inPtsIdx]=polyPts | |
return poly | |
def clipLine(self, x1, y1, equation, leftDir): | |
xmin, xmax, ymin, ymax = self.extent | |
a,b,c=equation | |
if b==0:#vertical line | |
if leftDir:#left is bottom of vertical line | |
return (x1,ymax) | |
else: | |
return (x1,ymin) | |
elif a==0:#horizontal line | |
if leftDir: | |
return (xmin,y1) | |
else: | |
return (xmax,y1) | |
else: | |
y2_at_xmin=(c-a*xmin)/b | |
y2_at_xmax=(c-a*xmax)/b | |
x2_at_ymin=(c-b*ymin)/a | |
x2_at_ymax=(c-b*ymax)/a | |
intersectPts=[] | |
if ymin<=y2_at_xmin<=ymax:#valid intersect point | |
intersectPts.append((xmin, y2_at_xmin)) | |
if ymin<=y2_at_xmax<=ymax: | |
intersectPts.append((xmax, y2_at_xmax)) | |
if xmin<=x2_at_ymin<=xmax: | |
intersectPts.append((x2_at_ymin, ymin)) | |
if xmin<=x2_at_ymax<=xmax: | |
intersectPts.append((x2_at_ymax, ymax)) | |
#delete duplicate (happens if intersect point is at extent corner) | |
intersectPts=set(intersectPts) | |
#choose target intersect point | |
if leftDir: | |
pt=min(intersectPts)#smaller x value | |
else: | |
pt=max(intersectPts) | |
return pt | |
def inExtent(self, x, y): | |
xmin, xmax, ymin, ymax = self.extent | |
return x>=xmin and x<=xmax and y>=ymin and y<=ymax | |
def orderPts(self, edges): | |
poly=[]#returned polygon points list [pt1, pt2, pt3, pt4 ....] | |
pts=[] | |
#get points list | |
for edge in edges: | |
pts.extend([pt for pt in edge]) | |
#try to get start & end point | |
try: | |
startPt, endPt = [pt for pt in pts if pts.count(pt)<2]#start and end point aren't duplicate | |
except:#all points are duplicate --> polygon is complete --> append some or other edge points | |
complete=True | |
firstIdx=0 | |
poly.append(edges[0][0]) | |
poly.append(edges[0][1]) | |
else:#incomplete --> append the first edge points | |
complete=False | |
#search first edge | |
for i, edge in enumerate(edges): | |
if startPt in edge:#find | |
firstIdx=i | |
break | |
poly.append(edges[firstIdx][0]) | |
poly.append(edges[firstIdx][1]) | |
if poly[0]!=startPt: poly.reverse() | |
#append next points in list | |
del edges[firstIdx] | |
while edges:#all points will be treated when edges list will be empty | |
currentPt = poly[-1]#last item | |
for i, edge in enumerate(edges): | |
if currentPt==edge[0]: | |
poly.append(edge[1]) | |
break | |
elif currentPt==edge[1]: | |
poly.append(edge[0]) | |
break | |
del edges[i] | |
return poly, complete | |
def setClipBuffer(self, xpourcent, ypourcent): | |
xmin, xmax, ymin, ymax = self.extent | |
witdh=xmax-xmin | |
height=ymax-ymin | |
xmin=xmin-witdh*xpourcent/100 | |
xmax=xmax+witdh*xpourcent/100 | |
ymin=ymin-height*ypourcent/100 | |
ymax=ymax+height*ypourcent/100 | |
self.extent=xmin, xmax, ymin, ymax | |
########End clip functions######## | |
def outSite(self,s): | |
if(self.debug): | |
print("site (%d) at %f %f" % (s.sitenum, s.x, s.y)) | |
elif(self.triangulate): | |
pass | |
elif(self.doPrint): | |
print("s %f %f" % (s.x, s.y)) | |
def outVertex(self,s): | |
self.vertices.append((s.x,s.y)) | |
if(self.debug): | |
print("vertex(%d) at %f %f" % (s.sitenum, s.x, s.y)) | |
elif(self.triangulate): | |
pass | |
elif(self.doPrint): | |
print("v %f %f" % (s.x,s.y)) | |
def outTriple(self,s1,s2,s3): | |
self.triangles.append((s1.sitenum, s2.sitenum, s3.sitenum)) | |
if(self.debug): | |
print("circle through left=%d right=%d bottom=%d" % (s1.sitenum, s2.sitenum, s3.sitenum)) | |
elif(self.triangulate and self.doPrint): | |
print("%d %d %d" % (s1.sitenum, s2.sitenum, s3.sitenum)) | |
def outBisector(self,edge): | |
self.lines.append((edge.a, edge.b, edge.c)) | |
if(self.debug): | |
print("line(%d) %gx+%gy=%g, bisecting %d %d" % (edge.edgenum, edge.a, edge.b, edge.c, edge.reg[0].sitenum, edge.reg[1].sitenum)) | |
elif(self.doPrint): | |
print("l %f %f %f" % (edge.a, edge.b, edge.c)) | |
def outEdge(self,edge): | |
sitenumL = -1 | |
if edge.ep[Edge.LE] is not None: | |
sitenumL = edge.ep[Edge.LE].sitenum | |
sitenumR = -1 | |
if edge.ep[Edge.RE] is not None: | |
sitenumR = edge.ep[Edge.RE].sitenum | |
#polygons dict add by CF | |
if edge.reg[0].sitenum not in self.polygons: | |
self.polygons[edge.reg[0].sitenum] = [] | |
if edge.reg[1].sitenum not in self.polygons: | |
self.polygons[edge.reg[1].sitenum] = [] | |
self.polygons[edge.reg[0].sitenum].append((edge.edgenum,sitenumL,sitenumR)) | |
self.polygons[edge.reg[1].sitenum].append((edge.edgenum,sitenumL,sitenumR)) | |
self.edges.append((edge.edgenum,sitenumL,sitenumR)) | |
if(not self.triangulate): | |
if(self.doPrint): | |
print("e %d" % edge.edgenum) | |
print(" %d " % sitenumL) | |
print("%d" % sitenumR) | |
#------------------------------------------------------------------ | |
def voronoi(siteList,context): | |
context.extent=siteList.extent | |
edgeList = EdgeList(siteList.xmin,siteList.xmax,len(siteList)) | |
priorityQ = PriorityQueue(siteList.ymin,siteList.ymax,len(siteList)) | |
siteIter = siteList.iterator() | |
bottomsite = siteIter.next() | |
context.outSite(bottomsite) | |
newsite = siteIter.next() | |
minpt = Site(-BIG_FLOAT,-BIG_FLOAT) | |
while True: | |
if not priorityQ.isEmpty(): | |
minpt = priorityQ.getMinPt() | |
if (newsite and (priorityQ.isEmpty() or newsite<minpt)): | |
# newsite is smallest - this is a site event | |
context.outSite(newsite) | |
# get first Halfedge to the LEFT and RIGHT of the new site | |
lbnd = edgeList.leftbnd(newsite) | |
rbnd = lbnd.right | |
# if this halfedge has no edge, bot = bottom site (whatever that is) | |
# create a new edge that bisects | |
bot = lbnd.rightreg(bottomsite) | |
edge = Edge.bisect(bot,newsite) | |
context.outBisector(edge) | |
# create a new Halfedge, setting its pm field to 0 and insert | |
# this new bisector edge between the left and right vectors in | |
# a linked list | |
bisector = Halfedge(edge,Edge.LE) | |
edgeList.insert(lbnd,bisector) | |
# if the new bisector intersects with the left edge, remove | |
# the left edge's vertex, and put in the new one | |
p = lbnd.intersect(bisector) | |
if p is not None: | |
priorityQ.delete(lbnd) | |
priorityQ.insert(lbnd,p,newsite.distance(p)) | |
# create a new Halfedge, setting its pm field to 1 | |
# insert the new Halfedge to the right of the original bisector | |
lbnd = bisector | |
bisector = Halfedge(edge,Edge.RE) | |
edgeList.insert(lbnd,bisector) | |
# if this new bisector intersects with the right Halfedge | |
p = bisector.intersect(rbnd) | |
if p is not None: | |
# push the Halfedge into the ordered linked list of vertices | |
priorityQ.insert(bisector,p,newsite.distance(p)) | |
newsite = siteIter.next() | |
elif not priorityQ.isEmpty(): | |
# intersection is smallest - this is a vector (circle) event | |
# pop the Halfedge with the lowest vector off the ordered list of | |
# vectors. Get the Halfedge to the left and right of the above HE | |
# and also the Halfedge to the right of the right HE | |
lbnd = priorityQ.popMinHalfedge() | |
llbnd = lbnd.left | |
rbnd = lbnd.right | |
rrbnd = rbnd.right | |
# get the Site to the left of the left HE and to the right of | |
# the right HE which it bisects | |
bot = lbnd.leftreg(bottomsite) | |
top = rbnd.rightreg(bottomsite) | |
# output the triple of sites, stating that a circle goes through them | |
mid = lbnd.rightreg(bottomsite) | |
context.outTriple(bot,top,mid) | |
# get the vertex that caused this event and set the vertex number | |
# couldn't do this earlier since we didn't know when it would be processed | |
v = lbnd.vertex | |
siteList.setSiteNumber(v) | |
context.outVertex(v) | |
# set the endpoint of the left and right Halfedge to be this vector | |
if lbnd.edge.setEndpoint(lbnd.pm,v): | |
context.outEdge(lbnd.edge) | |
if rbnd.edge.setEndpoint(rbnd.pm,v): | |
context.outEdge(rbnd.edge) | |
# delete the lowest HE, remove all vertex events to do with the | |
# right HE and delete the right HE | |
edgeList.delete(lbnd) | |
priorityQ.delete(rbnd) | |
edgeList.delete(rbnd) | |
# if the site to the left of the event is higher than the Site | |
# to the right of it, then swap them and set 'pm' to RIGHT | |
pm = Edge.LE | |
if bot.y > top.y: | |
bot,top = top,bot | |
pm = Edge.RE | |
# Create an Edge (or line) that is between the two Sites. This | |
# creates the formula of the line, and assigns a line number to it | |
edge = Edge.bisect(bot, top) | |
context.outBisector(edge) | |
# create a HE from the edge | |
bisector = Halfedge(edge, pm) | |
# insert the new bisector to the right of the left HE | |
# set one endpoint to the new edge to be the vector point 'v' | |
# If the site to the left of this bisector is higher than the right | |
# Site, then this endpoint is put in position 0; otherwise in pos 1 | |
edgeList.insert(llbnd, bisector) | |
if edge.setEndpoint(Edge.RE - pm, v): | |
context.outEdge(edge) | |
# if left HE and the new bisector don't intersect, then delete | |
# the left HE, and reinsert it | |
p = llbnd.intersect(bisector) | |
if p is not None: | |
priorityQ.delete(llbnd); | |
priorityQ.insert(llbnd, p, bot.distance(p)) | |
# if right HE and the new bisector don't intersect, then reinsert it | |
p = bisector.intersect(rrbnd) | |
if p is not None: | |
priorityQ.insert(bisector, p, bot.distance(p)) | |
else: | |
break | |
he = edgeList.leftend.right | |
while he is not edgeList.rightend: | |
context.outEdge(he.edge) | |
he = he.right | |
Edge.EDGE_NUM = 0#CF | |
#------------------------------------------------------------------ | |
def isEqual(a,b,relativeError=TOLERANCE): | |
# is nearly equal to within the allowed relative error | |
norm = max(abs(a),abs(b)) | |
return (norm < relativeError) or (abs(a - b) < (relativeError * norm)) | |
#------------------------------------------------------------------ | |
class Site(object): | |
def __init__(self,x=0.0,y=0.0,sitenum=0): | |
self.x = x | |
self.y = y | |
self.sitenum = sitenum | |
def dump(self): | |
print("Site #%d (%g, %g)" % (self.sitenum,self.x,self.y)) | |
def __lt__(self,other): | |
if self.y < other.y: | |
return True | |
elif self.y > other.y: | |
return False | |
elif self.x < other.x: | |
return True | |
elif self.x > other.x: | |
return False | |
else: | |
return False | |
def __eq__(self,other): | |
if self.y == other.y and self.x == other.x: | |
return True | |
def distance(self,other): | |
dx = self.x - other.x | |
dy = self.y - other.y | |
return math.sqrt(dx*dx + dy*dy) | |
#------------------------------------------------------------------ | |
class Edge(object): | |
LE = 0#left end indice --> edge.ep[Edge.LE] | |
RE = 1#right end indice | |
EDGE_NUM = 0 | |
DELETED = {} # marker value | |
def __init__(self): | |
self.a = 0.0#equation of the line a*x+b*y = c | |
self.b = 0.0 | |
self.c = 0.0 | |
self.ep = [None,None]#end point (2 tuples of site) | |
self.reg = [None,None] | |
self.edgenum = 0 | |
def dump(self): | |
print("(#%d a=%g, b=%g, c=%g)" % (self.edgenum,self.a,self.b,self.c)) | |
print("ep",self.ep) | |
print("reg",self.reg) | |
def setEndpoint(self, lrFlag, site): | |
self.ep[lrFlag] = site | |
if self.ep[Edge.RE - lrFlag] is None: | |
return False | |
return True | |
@staticmethod | |
def bisect(s1,s2): | |
newedge = Edge() | |
newedge.reg[0] = s1 # store the sites that this edge is bisecting | |
newedge.reg[1] = s2 | |
# to begin with, there are no endpoints on the bisector - it goes to infinity | |
# ep[0] and ep[1] are None | |
# get the difference in x dist between the sites | |
dx = float(s2.x - s1.x) | |
dy = float(s2.y - s1.y) | |
adx = abs(dx) # make sure that the difference in positive | |
ady = abs(dy) | |
# get the slope of the line | |
newedge.c = float(s1.x * dx + s1.y * dy + (dx*dx + dy*dy)*0.5) | |
if adx > ady : | |
# set formula of line, with x fixed to 1 | |
newedge.a = 1.0 | |
newedge.b = dy/dx | |
newedge.c /= dx | |
else: | |
# set formula of line, with y fixed to 1 | |
newedge.b = 1.0 | |
newedge.a = dx/dy | |
newedge.c /= dy | |
newedge.edgenum = Edge.EDGE_NUM | |
Edge.EDGE_NUM += 1 | |
return newedge | |
#------------------------------------------------------------------ | |
class Halfedge(object): | |
def __init__(self,edge=None,pm=Edge.LE): | |
self.left = None # left Halfedge in the edge list | |
self.right = None # right Halfedge in the edge list | |
self.qnext = None # priority queue linked list pointer | |
self.edge = edge # edge list Edge | |
self.pm = pm | |
self.vertex = None # Site() | |
self.ystar = BIG_FLOAT | |
def dump(self): | |
print("Halfedge--------------------------") | |
print("left: ", self.left) | |
print("right: ", self.right) | |
print("edge: ", self.edge) | |
print("pm: ", self.pm) | |
print("vertex: "), | |
if self.vertex: self.vertex.dump() | |
else: print("None") | |
print("ystar: ", self.ystar) | |
def __lt__(self,other): | |
if self.ystar < other.ystar: | |
return True | |
elif self.ystar > other.ystar: | |
return False | |
elif self.vertex.x < other.vertex.x: | |
return True | |
elif self.vertex.x > other.vertex.x: | |
return False | |
else: | |
return False | |
def __eq__(self,other): | |
if self.ystar == other.ystar and self.vertex.x == other.vertex.x: | |
return True | |
def leftreg(self,default): | |
if not self.edge: | |
return default | |
elif self.pm == Edge.LE: | |
return self.edge.reg[Edge.LE] | |
else: | |
return self.edge.reg[Edge.RE] | |
def rightreg(self,default): | |
if not self.edge: | |
return default | |
elif self.pm == Edge.LE: | |
return self.edge.reg[Edge.RE] | |
else: | |
return self.edge.reg[Edge.LE] | |
# returns True if p is to right of halfedge self | |
def isPointRightOf(self,pt): | |
e = self.edge | |
topsite = e.reg[1] | |
right_of_site = pt.x > topsite.x | |
if(right_of_site and self.pm == Edge.LE): | |
return True | |
if(not right_of_site and self.pm == Edge.RE): | |
return False | |
if(e.a == 1.0): | |
dyp = pt.y - topsite.y | |
dxp = pt.x - topsite.x | |
fast = 0; | |
if ((not right_of_site and e.b < 0.0) or (right_of_site and e.b >= 0.0)): | |
above = dyp >= e.b * dxp | |
fast = above | |
else: | |
above = pt.x + pt.y * e.b > e.c | |
if(e.b < 0.0): | |
above = not above | |
if (not above): | |
fast = 1 | |
if (not fast): | |
dxs = topsite.x - (e.reg[0]).x | |
above = e.b * (dxp*dxp - dyp*dyp) < dxs*dyp*(1.0+2.0*dxp/dxs + e.b*e.b) | |
if(e.b < 0.0): | |
above = not above | |
else: # e.b == 1.0 | |
yl = e.c - e.a * pt.x | |
t1 = pt.y - yl | |
t2 = pt.x - topsite.x | |
t3 = yl - topsite.y | |
above = t1*t1 > t2*t2 + t3*t3 | |
if(self.pm==Edge.LE): | |
return above | |
else: | |
return not above | |
#-------------------------- | |
# create a new site where the Halfedges el1 and el2 intersect | |
def intersect(self,other): | |
e1 = self.edge | |
e2 = other.edge | |
if (e1 is None) or (e2 is None): | |
return None | |
# if the two edges bisect the same parent return None | |
if e1.reg[1] is e2.reg[1]: | |
return None | |
d = e1.a * e2.b - e1.b * e2.a | |
if isEqual(d,0.0): | |
return None | |
xint = (e1.c*e2.b - e2.c*e1.b) / d | |
yint = (e2.c*e1.a - e1.c*e2.a) / d | |
if e1.reg[1]< e2.reg[1]: | |
he = self | |
e = e1 | |
else: | |
he = other | |
e = e2 | |
rightOfSite = xint >= e.reg[1].x | |
if((rightOfSite and he.pm == Edge.LE) or | |
(not rightOfSite and he.pm == Edge.RE)): | |
return None | |
# create a new site at the point of intersection - this is a new | |
# vector event waiting to happen | |
return Site(xint,yint) | |
#------------------------------------------------------------------ | |
class EdgeList(object): | |
def __init__(self,xmin,xmax,nsites): | |
if xmin > xmax: xmin,xmax = xmax,xmin | |
self.hashsize = int(2*math.sqrt(nsites+4)) | |
self.xmin = xmin | |
self.deltax = float(xmax - xmin) | |
self.hash = [None]*self.hashsize | |
self.leftend = Halfedge() | |
self.rightend = Halfedge() | |
self.leftend.right = self.rightend | |
self.rightend.left = self.leftend | |
self.hash[0] = self.leftend | |
self.hash[-1] = self.rightend | |
def insert(self,left,he): | |
he.left = left | |
he.right = left.right | |
left.right.left = he | |
left.right = he | |
def delete(self,he): | |
he.left.right = he.right | |
he.right.left = he.left | |
he.edge = Edge.DELETED | |
# Get entry from hash table, pruning any deleted nodes | |
def gethash(self,b): | |
if(b < 0 or b >= self.hashsize): | |
return None | |
he = self.hash[b] | |
if he is None or he.edge is not Edge.DELETED: | |
return he | |
# Hash table points to deleted half edge. Patch as necessary. | |
self.hash[b] = None | |
return None | |
def leftbnd(self,pt): | |
# Use hash table to get close to desired halfedge | |
bucket = int(((pt.x - self.xmin)/self.deltax * self.hashsize)) | |
if(bucket < 0): | |
bucket =0; | |
if(bucket >=self.hashsize): | |
bucket = self.hashsize-1 | |
he = self.gethash(bucket) | |
if(he is None): | |
i = 1 | |
while True: | |
he = self.gethash(bucket-i) | |
if (he is not None): break; | |
he = self.gethash(bucket+i) | |
if (he is not None): break; | |
i += 1 | |
# Now search linear list of halfedges for the corect one | |
if (he is self.leftend) or (he is not self.rightend and he.isPointRightOf(pt)): | |
he = he.right | |
while he is not self.rightend and he.isPointRightOf(pt): | |
he = he.right | |
he = he.left; | |
else: | |
he = he.left | |
while (he is not self.leftend and not he.isPointRightOf(pt)): | |
he = he.left | |
# Update hash table and reference counts | |
if(bucket > 0 and bucket < self.hashsize-1): | |
self.hash[bucket] = he | |
return he | |
#------------------------------------------------------------------ | |
class PriorityQueue(object): | |
def __init__(self,ymin,ymax,nsites): | |
self.ymin = ymin | |
self.deltay = ymax - ymin | |
self.hashsize = int(4 * math.sqrt(nsites)) | |
self.count = 0 | |
self.minidx = 0 | |
self.hash = [] | |
for i in range(self.hashsize): | |
self.hash.append(Halfedge()) | |
def __len__(self): | |
return self.count | |
def isEmpty(self): | |
return self.count == 0 | |
def insert(self,he,site,offset): | |
he.vertex = site | |
he.ystar = site.y + offset | |
last = self.hash[self.getBucket(he)] | |
next = last.qnext | |
while((next is not None) and he > next): | |
last = next | |
next = last.qnext | |
he.qnext = last.qnext | |
last.qnext = he | |
self.count += 1 | |
def delete(self,he): | |
if (he.vertex is not None): | |
last = self.hash[self.getBucket(he)] | |
while last.qnext is not he: | |
last = last.qnext | |
last.qnext = he.qnext | |
self.count -= 1 | |
he.vertex = None | |
def getBucket(self,he): | |
bucket = int(((he.ystar - self.ymin) / self.deltay) * self.hashsize) | |
if bucket < 0: bucket = 0 | |
if bucket >= self.hashsize: bucket = self.hashsize-1 | |
if bucket < self.minidx: self.minidx = bucket | |
return bucket | |
def getMinPt(self): | |
while(self.hash[self.minidx].qnext is None): | |
self.minidx += 1 | |
he = self.hash[self.minidx].qnext | |
x = he.vertex.x | |
y = he.ystar | |
return Site(x,y) | |
def popMinHalfedge(self): | |
curr = self.hash[self.minidx].qnext | |
self.hash[self.minidx].qnext = curr.qnext | |
self.count -= 1 | |
return curr | |
#------------------------------------------------------------------ | |
class SiteList(object): | |
def __init__(self,pointList): | |
self.__sites = [] | |
self.__sitenum = 0 | |
self.__xmin = min([pt.x for pt in pointList]) | |
self.__ymin = min([pt.y for pt in pointList]) | |
self.__xmax = max([pt.x for pt in pointList]) | |
self.__ymax = max([pt.y for pt in pointList]) | |
self.__extent=(self.__xmin, self.__xmax, self.__ymin, self.__ymax) | |
for i,pt in enumerate(pointList): | |
self.__sites.append(Site(pt.x,pt.y,i)) | |
self.__sites.sort() | |
def setSiteNumber(self,site): | |
site.sitenum = self.__sitenum | |
self.__sitenum += 1 | |
class Iterator(object): | |
def __init__(this,lst): this.generator = (s for s in lst) | |
def __iter__(this): return this | |
def next(this): | |
try: | |
if PY3: | |
return this.generator.__next__() | |
else: | |
return this.generator.next() | |
except StopIteration: | |
return None | |
def iterator(self): | |
return SiteList.Iterator(self.__sites) | |
def __iter__(self): | |
return SiteList.Iterator(self.__sites) | |
def __len__(self): | |
return len(self.__sites) | |
def _getxmin(self): return self.__xmin | |
def _getymin(self): return self.__ymin | |
def _getxmax(self): return self.__xmax | |
def _getymax(self): return self.__ymax | |
def _getextent(self): return self.__extent | |
xmin = property(_getxmin) | |
ymin = property(_getymin) | |
xmax = property(_getxmax) | |
ymax = property(_getymax) | |
extent = property(_getextent) | |
#------------------------------------------------------------------ | |
def computeVoronoiDiagram(points, xBuff=0, yBuff=0, polygonsOutput=False, formatOutput=False, closePoly=True): | |
""" | |
Takes : | |
- a list of point objects (which must have x and y fields). | |
- x and y buffer values which are the expansion percentages of the bounding box rectangle including all input points. | |
Returns : | |
- With default options : | |
A list of 2-tuples, representing the two points of each Voronoi diagram edge. | |
Each point contains 2-tuples which are the x,y coordinates of point. | |
if formatOutput is True, returns : | |
- a list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices. | |
- and a list of 2-tuples (v1, v2) representing edges of the Voronoi diagram. | |
v1 and v2 are the indices of the vertices at the end of the edge. | |
- If polygonsOutput option is True, returns : | |
A dictionary of polygons, keys are the indices of the input points, | |
values contains n-tuples representing the n points of each Voronoi diagram polygon. | |
Each point contains 2-tuples which are the x,y coordinates of point. | |
if formatOutput is True, returns : | |
- A list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices. | |
- and a dictionary of input points indices. Values contains n-tuples representing the n points of each Voronoi diagram polygon. | |
Each tuple contains the vertex indices of the polygon vertices. | |
- if closePoly is True then, in the list of points of a polygon, last point will be the same of first point | |
""" | |
siteList = SiteList(points) | |
context = Context() | |
voronoi(siteList,context) | |
context.setClipBuffer(xBuff, yBuff) | |
if not polygonsOutput: | |
clipEdges=context.getClipEdges() | |
if formatOutput: | |
vertices, edgesIdx = formatEdgesOutput(clipEdges) | |
return vertices, edgesIdx | |
else: | |
return clipEdges | |
else: | |
clipPolygons=context.getClipPolygons(closePoly) | |
if formatOutput: | |
vertices, polyIdx = formatPolygonsOutput(clipPolygons) | |
return vertices, polyIdx | |
else: | |
return clipPolygons | |
def formatEdgesOutput(edges): | |
#get list of points | |
pts=[] | |
for edge in edges: | |
pts.extend(edge) | |
#get unique values | |
pts=set(pts)#unique values (tuples are hashable) | |
#get dict {values:index} | |
valuesIdxDict = dict(zip(pts,range(len(pts)))) | |
#get edges index reference | |
edgesIdx=[] | |
for edge in edges: | |
edgesIdx.append([valuesIdxDict[pt] for pt in edge]) | |
return list(pts), edgesIdx | |
def formatPolygonsOutput(polygons): | |
#get list of points | |
pts=[] | |
for poly in polygons.values(): | |
pts.extend(poly) | |
#get unique values | |
pts=set(pts)#unique values (tuples are hashable) | |
#get dict {values:index} | |
valuesIdxDict = dict(zip(pts,range(len(pts)))) | |
#get polygons index reference | |
polygonsIdx={} | |
for inPtsIdx, poly in polygons.items(): | |
polygonsIdx[inPtsIdx]=[valuesIdxDict[pt] for pt in poly] | |
return list(pts), polygonsIdx | |
#------------------------------------------------------------------ | |
def computeDelaunayTriangulation(points): | |
""" Takes a list of point objects (which must have x and y fields). | |
Returns a list of 3-tuples: the indices of the points that form a | |
Delaunay triangle. | |
""" | |
siteList = SiteList(points) | |
context = Context() | |
context.triangulate = True | |
voronoi(siteList,context) | |
return context.triangles | |
#----------------------------------------------------------------------------- | |
#if __name__=="__main__": | |
try: | |
from PySide import QtGui, QtCore | |
import PySide.QtGui as QtWidgets | |
import shiboken | |
except ImportError: | |
from PySide2 import QtGui, QtCore, QtWidgets | |
import shiboken2 as shiboken | |
import maya.cmds as mc | |
import maya.OpenMaya as om | |
import maya.OpenMayaUI as omui | |
import traceback | |
from functools import wraps | |
# Decorator for undo support. | |
def openCloseChunk(func): | |
@wraps(func) | |
def wrapper(*args, **kargs): | |
action = None | |
try: | |
mc.undoInfo(openChunk=True) | |
action = func(*args, **kargs) | |
except: | |
print(traceback.format_exc()) | |
pass | |
finally: | |
mc.undoInfo(closeChunk=True) | |
return action | |
return wrapper | |
class Point: | |
def __init__(self, x, y, z, projection_camera): | |
if projection_camera == "RIGHT": | |
self.x, self.y, self.z = z, y, x | |
if projection_camera == "LEFT": | |
self.x, self.y, self.z = y, z, x | |
if projection_camera == "TOP": | |
self.x, self.y, self.z = x, z, y | |
if projection_camera == "BOTTOM": | |
self.x, self.y, self.z = z, x, y | |
if projection_camera == "FRONT": | |
self.x, self.y, self.z = y, x, z | |
if projection_camera == "BACK": | |
self.x, self.y, self.z = x, y, z | |
class MeshFromPoints: | |
def __init__(self, projection_camera): | |
self.__projection_camera = projection_camera | |
@property | |
def projection_camera(self): | |
return self.__projection_camera | |
def create_facet(self, positions, triangle): | |
facet_tranform_node, facet_shape_node = mc.polyCreateFacet( point=[ positions[triangle[0]], positions[triangle[1]], positions[triangle[2]] ] ) | |
return facet_tranform_node | |
def main(self): | |
transform_nodes = mc.ls(selection=True, type='transform', long=True) | |
if len(transform_nodes) < 3: | |
om.MGlobal.displayError("You mush select at least 3 transform nodes.") | |
return | |
positions = [mc.xform(transform_node, q=True, translation=True) for transform_node in transform_nodes] | |
points = [Point(position[0], position[1], position[2], self.projection_camera) for position in positions] | |
triangles = computeDelaunayTriangulation(points) | |
facet_tranform_nodes = [self.create_facet(positions, triangle) for triangle in triangles] | |
if len(facet_tranform_nodes) < 2: | |
return | |
# Combine facets | |
mfp_transform_node , mfp_shape_node = mc.polyUnite(facet_tranform_nodes, name="mfp_poly_#") | |
mc.polyMergeVertex("{0}.vtx[:]".format(mfp_transform_node), distance=0.001, alwaysMergeTwoVertices=True) | |
mc.delete(mfp_transform_node, constructionHistory=True) | |
class MeshFromPointsDialog(QtWidgets.QDialog): | |
def __init__(self): | |
if sys.version_info.major < 3: | |
maya_main_window = shiboken.wrapInstance(long(omui.MQtUtil.mainWindow()), QtWidgets.QWidget) | |
else: | |
maya_main_window = shiboken.wrapInstance(int(omui.MQtUtil.mainWindow()), QtWidgets.QWidget) | |
super(MeshFromPointsDialog, self).__init__(maya_main_window) | |
self.setWindowTitle("Mesh From Points") | |
self.setWindowFlags(self.windowFlags() ^ QtCore.Qt.WindowContextHelpButtonHint) | |
self.setStyleSheet("* {font-size: 15px;}") | |
self.create_widgets() | |
self.create_layout() | |
self.create_connections() | |
def create_widgets(self): | |
self.projection_camera_right_rb = QtWidgets.QRadioButton("RIGHT (X+)") | |
self.projection_camera_left_rb = QtWidgets.QRadioButton("LEFT (X-)") | |
self.projection_camera_top_rb = QtWidgets.QRadioButton("TOP (Y+)") | |
self.projection_camera_bottom_rb = QtWidgets.QRadioButton("BOTTOM (Y-)") | |
self.projection_camera_front_rb = QtWidgets.QRadioButton("FRONT (Z+)") | |
self.projection_camera_back_rb = QtWidgets.QRadioButton("BACK (Z-)") | |
self.run_btn = QtWidgets.QPushButton("RUN") | |
self.run_btn.setMinimumWidth(250) | |
def create_layout(self): | |
projection_camera_groupbox = QtWidgets.QGroupBox("Projection Camera") | |
projection_camera_layout = QtWidgets.QGridLayout() | |
projection_camera_layout.addWidget(self.projection_camera_right_rb, 0, 0) | |
projection_camera_layout.addWidget(self.projection_camera_top_rb, 0, 1) | |
projection_camera_layout.addWidget(self.projection_camera_front_rb, 0, 2) | |
projection_camera_layout.addWidget(self.projection_camera_left_rb, 1, 0) | |
projection_camera_layout.addWidget(self.projection_camera_bottom_rb, 1, 1) | |
projection_camera_layout.addWidget(self.projection_camera_back_rb, 1, 2) | |
projection_camera_groupbox.setLayout(projection_camera_layout) | |
main_layout = QtWidgets.QVBoxLayout(self) | |
main_layout.addWidget(projection_camera_groupbox) | |
main_layout.addWidget(self.run_btn) | |
def create_connections(self): | |
self.run_btn.clicked.connect(self.run_btn_handler) | |
@openCloseChunk | |
def run_btn_handler(self): | |
if self.projection_camera_right_rb.isChecked(): projection_camera = "RIGHT" | |
if self.projection_camera_left_rb.isChecked(): projection_camera = "LEFT" | |
if self.projection_camera_top_rb.isChecked(): projection_camera = "TOP" | |
if self.projection_camera_bottom_rb.isChecked(): projection_camera = "BOTTOM" | |
if self.projection_camera_front_rb.isChecked(): projection_camera = "FRONT" | |
if self.projection_camera_back_rb.isChecked(): projection_camera = "BACK" | |
mfp = MeshFromPoints(projection_camera) | |
mfp.main() | |
if __name__=="__main__": | |
try: | |
mesh_from_points_dialog.close() | |
mesh_from_points_dialog.deleteLater() | |
except: | |
pass | |
mesh_from_points_dialog = MeshFromPointsDialog() | |
mesh_from_points_dialog.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment