Last active
February 6, 2022 19:18
-
-
Save klgraham/26d82caa335b89750796c0531f9e81e4 to your computer and use it in GitHub Desktop.
Testing RTX 3090 for deep learning
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Modified example from: https://huggingface.co/facebook/detr-resnet-50 | |
from transformers import DetrFeatureExtractor, DetrForObjectDetection | |
from PIL import Image | |
import requests | |
import torch | |
print("GPU is available:", torch.cuda.is_available()) | |
#device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg' | |
image = Image.open(requests.get(url, stream=True).raw) | |
feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-50') | |
model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-50') | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
# On CPU (not batched) | |
with torch.no_grad(): | |
for i in range(50): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
bboxes = outputs.pred_boxes | |
# On GPU (not batched) | |
inputs.to("cuda:0") | |
model.to("cuda:0") | |
with torch.no_grad(): | |
for i in range(50): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
bboxes = outputs.pred_boxes | |
# On CPU (batched) | |
image_list = [image for i in range(32)] | |
inputs = feature_extractor(images=image_list, return_tensors="pt") | |
model = model.to("cpu") | |
with torch.no_grad(): | |
for i in range(2): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
bboxes = outputs.pred_boxes | |
# On GPU (batched) | |
inputs.to("cuda:0") | |
model.to("cuda:0") | |
with torch.no_grad(): | |
for i in range(2): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
bboxes = outputs.pred_boxes |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment