Last active
February 5, 2020 15:54
-
-
Save khodjaevsh/88273c2c5b84cb6904d2b0eb54844d27 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from bs4 import BeautifulSoup | |
import requests | |
from time import sleep | |
import datetime | |
def clean_string(column): | |
return column.apply(lambda x: x.replace("\n",'',2)).apply(lambda x: x.replace(' ','')) | |
def scrape_reviews(PATH, n_pages, sleep_time = 0.3): | |
names = [] | |
ratings = [] | |
headers = [] | |
reviews = [] | |
dates = [] | |
locations = [] | |
for p in range(n_pages): | |
sleep(sleep_time) | |
http = requests.get(f'{PATH}{p}&stars=1&stars=5') | |
bsoup = BeautifulSoup(http.text, 'html.parser') | |
review_containers = bsoup.find_all('div', class_ = 'review-info__body') | |
user_containers = bsoup.find_all('div', class_ = 'consumer-info__details') | |
rating_container = bsoup.find_all('div',class_ = "review-info__header__verified") | |
date_container = bsoup.find_all('div',class_ = "header__verified__date") | |
profile_link_containers = bsoup.find_all('aside', class_ = 'content-section__consumer-info' ) | |
for x in range(len(bsoup)): | |
review_c = review_containers[x] | |
headers.append(review_c.h2.a.text) | |
reviews.append(review_c.p.text) | |
reviewer = user_containers[x] | |
names.append(reviewer.h3.text) | |
rating = rating_container[x] | |
ratings.append(rating.div.attrs['class'][1][12]) | |
date = date_container[x] | |
dates.append(datetime.datetime.strptime(date.time.attrs['datetime'][0:10], '%Y-%m-%d').date()) | |
prof = profile_link_containers[x] | |
link = 'https://www.trustpilot.com'+ prof.a['href'] | |
c_profile = requests.get(f'{link}') | |
csoup = BeautifulSoup(c_profile.text, 'html.parser') | |
cust_container = csoup.find('div', class_ = 'user-summary-location') | |
locations.append(cust_container.text) | |
rev_df = pd.DataFrame(list(zip(names, headers, reviews, ratings, dates, locations)), | |
columns = ['Name','Header','Review','Rating', 'Date', 'Location']) | |
rev_df.Review = clean_string(rev_df.Review) | |
rev_df.Name = clean_string(rev_df.Name) | |
rev_df.Location = clean_string(rev_df.Location) | |
rev_df.Location = rev_df.Location.apply(lambda x: x.split(',',1)[-1]) | |
rev_df.Rating = rev_df.Rating.astype('int') | |
rev_df.Date = pd.to_datetime(rev_df.Date) | |
return rev_df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment