Created
June 11, 2021 14:49
-
-
Save khaotik/d7c8becf4f582444c2ecf8e68e46d37f to your computer and use it in GitHub Desktop.
minimal python implementation of secp256k1 curve
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
''' | |
minimal reference implementation of bitcoin's secp256k1 with general prime field | |
requires pari && cypari2 for certain operations. | |
''' | |
class EcPoint: | |
__slots__ = ('x', 'y') | |
def __init__(self, x, y): | |
self.x = x | |
self.y = y | |
def __repr__(self): | |
return '{}({},{})'.format(type(self).__name__, hex(self.x), hex(self.y)) | |
def __iter__(self): | |
yield self.x | |
yield self.y | |
def _calcSecp256k1GroupOrder(modp:int): | |
import cypari2 | |
pari = cypari2.Pari() | |
ec = pari.ellinit([0,0,0,0,7], modp) | |
return pari.ellcard(ec) | |
ec_t = EcPoint | |
class Secp256k1: | |
modp:int | |
_gorder:int | |
G:ec_t | |
iG:ec_t | |
def __init__(self, | |
modp:int=None, G:ec_t=None): | |
btc_gorder = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f | |
if modp is None: | |
modp = btc_gorder | |
self.modp = modp | |
if G is None: | |
if modp == btc_gorder: | |
G = EcPoint( | |
0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798, | |
0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8) | |
else: | |
self.modp = modp | |
G = self.randomPoint() | |
self.G = G | |
self.iG = self.inv(G) | |
def randomPoint(self): | |
import cypari2 | |
pari = cypari2.Pari() | |
ec = pari.ellinit([0,0,0,0,7], self.modp) | |
x,y = pari.random(ec) | |
return ec_t(int(x),int(y)) | |
def groupOrder(self): | |
ret = getattr(self,'_gorder',None) | |
if ret is None: | |
ret = _calcSecp256k1GroupOrder(self.modp) | |
self._gorder = ret | |
return ret | |
def mul(self, A:ec_t, B:ec_t): | |
modp = self.modp | |
if (A==1): | |
return B | |
if (B==1): | |
return A | |
Ax,Ay = A | |
Bx,By = B | |
if Ax != Bx: | |
s = ((Ay - By) * pow((Ax - Bx), -1, modp)) % modp | |
elif Ay == By: | |
s = (3*Ax*Ax * pow(2*Ay, -1, modp)) % modp | |
else: | |
return 1 | |
Cx = (s*s - Ax - Bx) % modp | |
Cy = (s*(Ax - Cx) - Ay) | |
Cy = Cy % modp | |
return ec_t(Cx, Cy) | |
def inv(self, A:ec_t): | |
if A==1: | |
return 1 | |
x,y = A | |
return ec_t(x,(-y)%self.modp) | |
def square(self, A:ec_t): | |
if A==1: | |
return 1 | |
modp = self.modp | |
x,y = A | |
s = (3*x*x * pow(2*y, -1, modp)) % modp | |
Cx = (s*s - x - x) % modp | |
Cy = (s*(x - Cx) - y) % modp | |
return ec_t(Cx, Cy) | |
def pow(self, A:ec_t, k:int): | |
if k==0: | |
return 1 | |
modp = self.modp | |
# k %= modp | |
nbits = k.bit_length() | |
ret = ec_t(A.x, A.y) | |
for i in range(nbits-1, 0, -1): | |
ret = self.square(ret) | |
if ((1<<(i-1)) & k): | |
ret = self.mul(ret, A) | |
return ret | |
def exp(self, i:int): | |
return self.pow(self.G, i) | |
secp256k1 = Secp256k1() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment