Last active
January 19, 2019 03:35
-
-
Save kammoh/e790151a9ca4c4d9f145806d851947da to your computer and use it in GitHub Desktop.
Miller Rabin Primality Test in Python (with latex trace)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gmpy2 | |
from gmpy2 import powmod | |
import random | |
def sr(n): | |
s = 0 | |
n = n - 1 | |
while n%2 == 0: | |
n = n // 2 | |
s += 1 | |
return (s, n) | |
def miller_rabin(n): | |
a = random.randint(2, n - 2) | |
s,r = sr(n) | |
y = powmod(a,r, n) | |
# print(f"s={s} r={r} a={a} y = {y}") | |
print(f""" | |
\\begin{{split}} | |
n &= {n} \\\\ | |
n-1 &= {n-1} = 2^{s} \\times {r} = 2^sr \\\\ & \\Rightarrow r={r}, \\ s={s} \\\\ | |
&2 \\le a \\le 49: a\\leftarrow {a} \\quad \\text{{random}} \\\\ | |
y &= a^r \\bmod n \\\\ &= {a}^{{{r}}} \\bmod {n} \\\\ &= {y} \\\\ | |
""") | |
print(f"& y = {y} \\ne 1 ({y != 1}) \\quad y = {y} \\ne {n-1} ({y != n-1}) \\\\") | |
if y != 1 and y != n-1: | |
j = 1 | |
print("&j \\leftarrow 1 \\\\") | |
print(f"&j = {j} \\le {s - 1} = s - 1 \\text{{({j <= s-1})}} \\quad y = {y} \\ne {n-1} = n-1 \\text{{({y != n-1})}} \\\\") | |
while j <= s-1 and y != n-1: | |
y_prev=y | |
y = powmod(y,2,n) | |
print(f"y & \leftarrow y^2 \\bmod n = {y_prev}^2 \\bmod {n} = {y} \\\\") | |
if y == 1: | |
print("& composite \\\\") | |
print("\end{split}") | |
return | |
j += 1 | |
print(f"&j \\leftarrow {j} \\\\") | |
print(f"&j = {j} \\le {s - 1} = s - 1 \\text{{({j <= s-1})}} \\quad y = {y} \\ne {n-1} = n-1 \\text{{({y != n-1})}} \\\\") | |
if y != n - 1: | |
print("& composite \\\\") | |
print("\end{split}") | |
return | |
print("& prime \\\\") | |
print("\end{split}") | |
miller_rabin(51) | |
miller_rabin(53) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment