Last active
October 27, 2015 09:48
-
-
Save jrabary/be32c2acabac880d2921 to your computer and use it in GitHub Desktop.
Fuel Transformer that samples data per target
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class PerClassSampler(Transformer): | |
def __init__(self, data_stream, class_per_batch, sample_per_class, **kwargs): | |
super(PerClassSampler, self).__init__(data_stream=data_stream, produces_examples=False, **kwargs) | |
self.class_per_batch = class_per_batch | |
self.sample_per_class = sample_per_class | |
self.total_sample_per_target = self.__total_sample_per_target__(data_stream) | |
def get_data(self, request=None): | |
if request is not None: | |
raise ValueError | |
current_targets = numpy.random.choice(self.total_sample_per_target.keys(), self.class_per_batch, replace=False) | |
current_targets_filled = dict([(c, False) for c in current_targets]) | |
current_targets_collected = dict([(c, 0) for c in current_targets]) | |
target_index = self.sources.index('targets') | |
feature_index = self.sources.index('features') | |
new_data = [[] for _ in self.sources] | |
while False in current_targets_filled.values(): | |
data = list(next(self.child_epoch_iterator)) | |
targets = data[target_index] | |
features = data[feature_index] | |
matches = numpy.in1d(targets, current_targets) | |
for i in range(matches.shape[0]): | |
if matches[i]: | |
target_value = targets[i] | |
if current_targets_collected[target_value] != self.total_sample_per_target[target_value]: | |
current_targets_collected[target_value] += 1 | |
else: | |
matches[i] = False | |
new_data[target_index].append(targets[matches]) | |
new_data[feature_index].append(features[matches]) | |
for k, v in current_targets_collected.iteritems(): | |
if v == self.total_sample_per_target[k]: | |
current_targets_filled[k] = True | |
return tuple([numpy.concatenate(x) for x in new_data]) | |
def __total_sample_per_target__(self, data_stream): | |
all_sample = dict() | |
for _, t in data_stream.get_epoch_iterator(): | |
for t_value in t.flatten(): | |
if t_value in all_sample: | |
all_sample[t_value] += 1 | |
else: | |
all_sample[t_value] = 1 | |
for k, v in all_sample.iteritems(): | |
if v > self.sample_per_class: | |
all_sample[k] = self.sample_per_class | |
return all_sample |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class TestPerClassSampler(TestCase): | |
def test_get_epoch_iterator(self): | |
nb_classes = 10 | |
class_per_batch = 3 | |
data_per_class = 4 | |
features = numpy.random.rand(200, 5) | |
targets = numpy.random.randint(nb_classes, size=200) | |
scheme = ShuffledScheme(examples=200, batch_size=10) | |
stream = DataStream(IndexableDataset(OrderedDict([('features', features), ('targets', targets)])), | |
iteration_scheme=scheme) | |
sampler = PerClassSampler(stream, class_per_batch, data_per_class) | |
for epoch in range(10): | |
batch = 0 | |
for x, t in sampler.get_epoch_iterator(): | |
selected_targets = numpy.unique(t) | |
self.assertEquals(selected_targets.shape[0], class_per_batch) | |
count = numpy.bincount(t) | |
for c in count: | |
self.assertLessEqual(c, data_per_class) | |
batch += 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment