Created
August 5, 2015 02:44
-
-
Save jose-roberto-abreu/ac922bc35be1cb00f8f6 to your computer and use it in GitHub Desktop.
Implementation Neural Network
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{"cells": [{"cell_type": "code", "metadata": {"trusted": true, "collapsed": false}, "execution_count": null, "outputs": [], "source": "import numpy as np\n\ndef loadDataSet():\n X = np.array([[1,1,1],[1,0,1],[1,1,0],[1,0,0]])\n y = np.array([[0],[1],[1],[0]])\n return X,y\n\ndef costError(w_1,w_2,currentIter):\n z_1 = X.dot(w_1.T)\n a_1 = np.hstack((np.ones((n_observations,1)),sigmoid(z_1)))\n \n z_2 = a_1.dot(w_2.T)\n a_2 = sigmoid(z_2)\n \n sumError = np.mean((y - a_2)**2)\n print(\"Error : %f , Iter: %d\"%(sumError,currentIter))\n \n \ndef sigmoid(z,derivate=False):\n if derivate:\n return sigmoid(z) * (1 - sigmoid(z))\n return 1 / (1 + np.e**-z)\n\ndef classify(w_1,w_2,input_test):\n z_1 = input_test.dot(w_1.T)\n a_1 = np.hstack((np.ones((1,1)),sigmoid(z_1)))\n \n z_2 = a_1.dot(w_2.T)\n a_2 = sigmoid(z_2)\n \n if a_2 >= 0.5:\n print(\"Classification : 1 , Prob: %f\"%a_2)\n else:\n print(\"Classification : 0 , Prob: %f\"%a_2)\n\nX,y = loadDataSet()\nn_observations,n_features = X.shape\nweights_1 = np.random.rand(2,3)\nweights_2 = np.random.rand(1,3)\n\nmaxIter = 5000\nfor currentIter in range(maxIter):\n costError(weights_1,weights_2,currentIter)\n \n #FeedFodward\n z_1 = X.dot(weights_1.T)\n a_1 = np.hstack((np.ones((n_observations,1)),sigmoid(z_1)))\n \n z_2 = a_1.dot(weights_2.T)\n a_2 = sigmoid(z_2)\n \n #BackPropagation\n d_2 = (y - a_2) #* sigmoid(z_2,derivate=True)\n d_1 = ((d_2.dot(weights_2))[:,1:]) * sigmoid(z_1,derivate=True)\n \n alpha = 1 #Learning Rate\n weights_2 = weights_2 + alpha * d_2.T.dot(a_1)\n weights_1 = weights_1 + alpha * d_1.T.dot(X)\n \nclassify(weights_1,weights_2,np.array([[1,1,1]])) \nclassify(weights_1,weights_2,np.array([[1,0,1]])) \nclassify(weights_1,weights_2,np.array([[1,1,0]])) \nclassify(weights_1,weights_2,np.array([[1,0,0]])) \n "}], "metadata": {"kernelspec": {"display_name": "Python 3", "name": "python3", "language": "python"}, "language_info": {"name": "python", "file_extension": ".py", "version": "3.4.3", "pygments_lexer": "ipython3", "codemirror_mode": {"name": "ipython", "version": 3}, "mimetype": "text/x-python", "nbconvert_exporter": "python"}}, "nbformat_minor": 0, "nbformat": 4} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment