todo
- received first by the OS
- then by websocket server code we don't control
- eventually handed over to us
- we parse the message enough to figure out the topic
| use serde::Deserialize; | |
| use actix_web::{web, App, HttpResponse, HttpServer}; | |
| fn gcd(mut n: u64, mut m: u64) -> u64 { | |
| assert!(n != 0 && m != 0); | |
| while m != 0 { | |
| if m < n { | |
| let t = m; | |
| m = n; | |
| n = t; |
| execve("/usr/bin/zoom", ["zoom"], 0x7ffdaeb67868 /* 49 vars */) = 0 | |
| brk(NULL) = 0x5589abe3f000 | |
| arch_prctl(0x3001 /* ARCH_??? */, 0x7fff06bc9380) = -1 EINVAL (Invalid argument) | |
| access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory) | |
| openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3 | |
| fstat(3, {st_mode=S_IFREG|0644, st_size=72876, ...}) = 0 | |
| mmap(NULL, 72876, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f950444f000 | |
| close(3) = 0 | |
| openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libpthread.so.0", O_RDONLY|O_CLOEXEC) = 3 | |
| read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\220\201\0\0\0\0\0\0"..., 832) = 832 |
| pub struct Solution {} | |
| impl Solution { | |
| /// True if there is a 132 pattern in nums. | |
| /// | |
| /// A 132 pattern is a subsequence of three integers nums[i], nums[j] and nums[k] | |
| /// such that i < j < k and nums[i] < nums[k] < nums[j]. | |
| /// | |
| pub fn find132pattern(nums: Vec<i32>) -> bool { | |
| // Loop invariants: |
| diff --git a/js/src/frontend/NameAnalysisTypes.h b/js/src/frontend/NameAnalysisTypes.h | |
| index 261b52771ab6..b9daa8ba5959 100644 | |
| --- a/js/src/frontend/NameAnalysisTypes.h | |
| +++ b/js/src/frontend/NameAnalysisTypes.h | |
| @@ -124,6 +124,10 @@ static inline bool DeclarationKindIsLexical(DeclarationKind kind) { | |
| return BindingKindIsLexical(DeclarationKindToBindingKind(kind)); | |
| } | |
| +enum class ClosedOver : bool { | |
| + No = false, Yes = true |
| import algebra.ring | |
| import tactic | |
| def sqr {α} [ring α] (a : α) := a * a | |
| theorem euler_four_square_identity {α} [comm_ring α] | |
| : ∀ a₁ a₂ a₃ a₄ b₁ b₂ b₃ b₄ : α, ∃ c₁ c₂ c₃ c₄ : α, | |
| (sqr a₁ + sqr a₂ + sqr a₃ + sqr a₄) * (sqr b₁ + sqr b₂ + sqr b₃ + sqr b₄) | |
| = (sqr c₁ + sqr c₂ + sqr c₃ + sqr c₄) | |
| := by { |
| """ Load usafacts.org dataset on COVID-19 spread per U.S. county over time. | |
| To use this, you need a copy of covid_confirmed_usafacts.csv, | |
| which you can download at | |
| <https://usafactsstatic.blob.core.windows.net/public/data/covid-19/covid_confirmed_usafacts.csv>. | |
| I got there from here: | |
| <https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/>. | |
| """ |
| import data.nat.prime | |
| import data.finset | |
| import algebra.big_operators | |
| import tactic | |
| open_locale big_operators | |
| -- Each element of a finite set divides the product of all that set's elements. | |
| lemma dvd_product_of_mem {S : finset ℕ} {x : ℕ} (hx : x ∈ S) | |
| : x ∣ ∏ y in S, y | |
| := by { |
| data Value = Num Integer | Nil | Cons Value Value | |
| deriving Show | |
| negateVal (Num x) = Num (-x) | |
| negateVal other = other | |
| decodeUnary ('0' : s) = (0, s) | |
| decodeUnary ('1' : s) = | |
| let (n, s') = decodeUnary s in |
| -- A One-Line Proof of the Infinitude of Primes | |
| -- [The American Mathematical Monthly, Vol. 122, No. 5 (May 2015), p. 466] | |
| -- https://twitter.com/pickover/status/1281229359349719043 | |
| import data.finset.basic -- for finset, finset.insert_erase | |
| import data.nat.prime -- for nat.{prime,min_fac} and related lemmas | |
| import data.real.basic -- for real.nontrivial, real.domain | |
| import analysis.special_functions.trigonometric -- for real.sin and related identities | |
| import algebra.big_operators -- for notation `∏`, finset.prod_* | |
| import algebra.ring -- for domain.to_no_zero_divisors |