-
-
Save jmacias/e20cbf65edb4edc762fa7126c5b9eeb0 to your computer and use it in GitHub Desktop.
How to process Event Hub Archive's files using Spark
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pyspark.sql import SparkSession | |
spark = SparkSession \ | |
.builder \ | |
.appName("spark-avro-json-sample") \ | |
.config('spark.hadoop.avro.mapred.ignore.inputs.without.extension', 'false') \ | |
.getOrCreate() | |
#storage->avro | |
avroDf = spark.read.format("com.databricks.spark.avro").load(in_path) | |
#avro->json | |
jsonRdd = avroDf.select(avroDf.Body.cast("string")).rdd.map(lambda x: x[0]) | |
data = spark.read.json(jsonRdd) # in real world it's better to specify a schema for the JSON | |
#do whatever you want with `data` |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment