-
-
Save jkaupp/900263469181f54da246 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(proto) | |
stat_smooth_func <- function (mapping = NULL, data = NULL, geom = "smooth", position = "identity", | |
method = "auto", formula = y ~ x, se = TRUE, n = 80, fullrange = FALSE, | |
level = 0.95, na.rm = FALSE, ...) { | |
StatSmoothFunc$new(mapping = mapping, data = data, geom = geom, position = position, | |
method = method, formula = formula, se = se, n = n, fullrange = fullrange, | |
level = level, na.rm = na.rm, ...) | |
} | |
StatSmoothFunc <- proto(ggplot2:::Stat, { | |
objname <- "smooth" | |
calculate_groups <- function(., data, scales, method="auto", formula=y~x, ...) { | |
rows <- daply(data, .(group), function(df) length(unique(df$x))) | |
if (all(rows == 1) && length(rows) > 1) { | |
message("geom_smooth: Only one unique x value each group.", | |
"Maybe you want aes(group = 1)?") | |
return(data.frame()) | |
} | |
# Figure out what type of smoothing to do: loess for small datasets, | |
# gam with a cubic regression basis for large data | |
# This is based on the size of the _largest_ group. | |
if (identical(method, "auto")) { | |
groups <- count(data, "group") | |
if (max(groups$freq) < 1000) { | |
method <- "loess" | |
message('geom_smooth: method="auto" and size of largest group is <1000,', | |
' so using loess.', | |
' Use \'method = x\' to change the smoothing method.') | |
} else { | |
method <- "gam" | |
formula <- y ~ s(x, bs = "cs") | |
message('geom_smooth: method="auto" and size of largest group is >=1000,', | |
' so using gam with formula: y ~ s(x, bs = "cs").', | |
' Use \'method = x\' to change the smoothing method.') | |
} | |
} | |
if (identical(method, "gam")) try_require("mgcv") | |
.super$calculate_groups(., data, scales, method = method, formula = formula, ...) | |
} | |
calculate <- function(., data, scales, method="auto", formula=y~x, se = TRUE, n=80, fullrange=FALSE, xseq = NULL, level=0.95, na.rm = FALSE, ...) { | |
data <- remove_missing(data, na.rm, c("x", "y"), name="stat_smooth") | |
if (length(unique(data$x)) < 2) { | |
# Not enough data to perform fit | |
return(data.frame()) | |
} | |
if (is.null(data$weight)) data$weight <- 1 | |
if (is.null(xseq)) { | |
if (is.integer(data$x)) { | |
if (fullrange) { | |
xseq <- scale_dimension(scales$x, c(0, 0)) | |
} else { | |
xseq <- sort(unique(data$x)) | |
} | |
} else { | |
if (fullrange) { | |
range <- scale_dimension(scales$x, c(0, 0)) | |
} else { | |
range <- range(data$x, na.rm=TRUE) | |
} | |
xseq <- seq(range[1], range[2], length=n) | |
} | |
} | |
if (is.character(method)) method <- match.fun(method) | |
method.special <- function(...) | |
method(formula, data=data, weights=weight, ...) | |
model <- safe.call(method.special, list(...), names(formals(method))) | |
predictdf(model, xseq, se, level) | |
m = model | |
eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(r)^2~"="~r2, | |
list(a = format(coef(m)[1], digits = 3), | |
b = format(coef(m)[2], digits = 3), | |
r2 = format(summary(m)$r.squared, digits = 3))) | |
func_string = as.character(as.expression(eq)) | |
data.frame(x=min(data$x)*0.9, y=max(data$y)*0.9, label=func_string) | |
} | |
required_aes <- c("x", "y") | |
default_geom <- function(.) GeomSmooth | |
}) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment