Created
June 26, 2024 07:23
-
-
Save jirilukavsky/6e77ef38b8bedd80cc6c88faf826388e to your computer and use it in GitHub Desktop.
Testing how accurate is parameter recovery for Poisson and binomial models for a large N=1000. Combinations of zeros (0 hits of 0 trials) do not pose a problem.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
library(brms) | |
library(tidybayes) | |
n <- 1000 | |
lambda <- 2 | |
p <- 0.50 | |
x <- rpois(n, lambda) | |
y <- rbinom(n, x, p) | |
d <- tibble(x, y) | |
mx <- brm( | |
x ~ 1, data = d, family = poisson | |
) | |
summary(mx) | |
px <- as_draws_df(mx) | |
px$b_Intercept |> exp() |> mean_hdci() | |
# y ymin ymax .width .point .interval | |
# 1 1.982956 1.895036 2.072006 0.95 mean hdci | |
my <- brm( | |
y | trials(x) ~ 1, data = d, family = binomial | |
) | |
summary(my) | |
py <- as_draws_df(my) | |
py$b_Intercept |> inv_logit_scaled() |> mean_hdci() | |
# y ymin ymax .width .point .interval | |
# 1 0.4867739 0.4661131 0.5087191 0.95 mean hdci |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment