Created
January 10, 2021 06:15
-
-
Save jinglescode/bc6f5b558cea67fdc36d98a7ec33b017 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Discriminator(nn.Module): | |
''' | |
Discriminator Class | |
Parameters: | |
in_dim: int, default: 784 | |
the dimension of the input (MNIST images are 28x28, so 784 so is the default) | |
hidden_dim: int, default: 128 | |
the inner dimension | |
out_dim: int, default: 1 | |
default 1 because we returns a 1-dimension tensor representing fake/real | |
''' | |
def __init__(self, in_dim=784, hidden_dim=128, out_dim=1): | |
super(Discriminator, self).__init__() | |
dims = [hidden_dim*4, hidden_dim*2, hidden_dim] | |
self.layers = nn.Sequential( | |
self.discriminator_block(in_dim, dims[0]), | |
self.discriminator_block(dims[0], dims[1]), | |
self.discriminator_block(dims[1], dims[2]), | |
nn.Linear(dims[2], out_dim) | |
) | |
def forward(self, x): | |
return self.layers(x) | |
def discriminator_block(self, input_dim, output_dim): | |
''' | |
A discriminator neural network layer, with a linear transformation | |
followed by an nn.LeakyReLU activation with negative slope of 0.2 | |
''' | |
return nn.Sequential( | |
nn.Linear(input_dim, output_dim), | |
nn.LeakyReLU(negative_slope=0.2) | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment