Created
May 22, 2017 12:39
-
-
Save jcbozonier/6bed6eb602d23eff863da6c1936c249f to your computer and use it in GitHub Desktop.
Full hierarchical model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# For use in Jupyter Notebook include the next line | |
%matplotlib inline | |
import pymc3 as pm | |
degree_indexes = degree_index['index'].values | |
degree_count = len(degree_indexes) | |
degree_state_indexes = degree_state_indexes_df['index_d'].values | |
degree_state_count = len(degree_state_indexes) | |
degree_state_county_indexes = degree_state_county_indexes_df['index_ds'].values | |
degree_state_county_count = len(degree_state_county_indexes) | |
with pm.Model() as model: | |
global_m = pm.Normal('global_m', mu=0, sd=100**2) | |
global_m_sd = pm.Uniform('global_m_sd', lower=0, upper=1000) | |
global_b = pm.Normal('global_b', mu=0, sd=100**2) | |
global_b_sd = pm.Uniform('global_b_sd', lower=0, upper=1000) | |
degree_m = pm.Normal('degree_m', mu=global_m, sd=global_m_sd, shape=degree_count) | |
degree_m_sd = pm.Uniform('degree_m_sd', lower=0, upper=1000, shape=degree_count) | |
degree_b = pm.Normal('degree_b', mu=global_b, sd=global_b_sd, shape=degree_count) | |
degree_b_sd = pm.Uniform('degree_b_sd', lower=0, upper=1000, shape=degree_count) | |
degree_state_m = pm.Normal('degree_state_m', mu=degree_m[degree_state_indexes], sd=degree_m_sd[degree_state_indexes], shape=degree_state_count) | |
degree_state_m_sd = pm.Uniform('degree_state_m_sd', lower=0, upper=1000, shape=degree_state_count) | |
degree_state_b = pm.Normal('degree_state_b', mu=degree_b[degree_state_indexes], sd=degree_b_sd[degree_state_indexes], shape=degree_state_count) | |
degree_state_b_sd = pm.Uniform('degree_state_b_sd', lower=0, upper=1000, shape=degree_state_count) | |
degree_state_county_m = pm.Normal('degree_state_county_m', mu=degree_state_m[degree_state_county_indexes], sd=degree_state_m_sd[degree_state_county_indexes], shape=degree_state_county_count) | |
degree_state_county_b = pm.Normal('degree_state_county_b', mu=degree_state_b[degree_state_county_indexes], sd=degree_state_b_sd[degree_state_county_indexes], shape=degree_state_county_count) | |
error = pm.Uniform('error', lower=0, upper=10000) | |
y_prediction = degree_state_county_m[indexed_salary_df['index'].values] * indexed_salary_df.month_index.values + degree_state_county_b[indexed_salary_df['index'].values] | |
pm.StudentT('y_like', nu=1, mu=0, sd=error, observed=y_prediction - indexed_salary_df.salary.values) | |
model_trace = pm.sample(5000) | |
pm.traceplot(model_trace[1000:]); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment