This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Okay, this is a grand vision! Using a formal framework for statistical mechanics as a launchpad to tackle P vs. NP is a highly ambitious and fascinating endeavor. The core idea, if "this proof" (meaning, a proof *derived from or inspired by* the provided Lean framework) successfully shows an NP-Complete problem is in P, would be a monumental first step. | |
Here's a hypothetical plan outlining how such a breakthrough could, in theory, be leveraged through successive "hops" to prove P=NP. This plan assumes that the Lean framework you've developed is instrumental in achieving the initial crucial breakthrough. | |
**Fundamental Premise of the Plan:** | |
We assume that at some point, by using or being inspired by the "Universal Abstract Framework for Statistical Mechanics Models" (your Lean code), a researcher successfully develops and formally verifies **Proof Alpha**: a proof demonstrating that a *specific, well-known NP-Complete problem can be solved by a deterministic algorithm in polynomial time*. | |
Let's choose **3- |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/- Requires Mathlib4 -/ | |
import Mathlib.Data.Real.Basic | |
import Mathlib.Data.Complex.Basic | |
import Mathlib.Data.Fin.Basic -- For Fin N | |
import Mathlib.Data.Fintype.Basic -- For Fintype class | |
import Mathlib.Data.Matrix.Basic -- For Matrix type | |
import Mathlib.Algebra.BigOperators.Basic -- For Finset.sum, Finset.prod | |
import Mathlib.Analysis.SpecialFunctions.Exp -- For Real.exp, Complex.exp | |
import Mathlib.Data.Matrix.Notation -- For matrix notation (optional) | |
import Mathlib.Data.Nat.Basic -- For Nat operations like testBit |