Created
March 5, 2021 07:00
-
-
Save jaircastruita/fe16af157112375043a4115d5aaa88f3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
model = MildNet() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
criterion = nn.TripletMarginLoss(reduction="none", margin=0.1) | |
optimizer = torch.optim.Adam(model.parameters()) | |
n_epochs = 161 | |
print_every = 20 | |
eval_losses = [] | |
train_losses = [] | |
for iter in range(n_epochs): | |
model.train() | |
running_loss = [] | |
for anchor, positive in tqdm(train_dl): | |
anchor, positive = anchor.to(device), positive.to(device) | |
anchor_embs = model(anchor) | |
positive_embs = model(positive) | |
indices = np.array(np.meshgrid(list(range(len(anchor))), list(range(len(positive))))).T.reshape(-1, 2) | |
valid_pairs = indices[np.where(indices[:,0] != indices[:,1]),:].squeeze(0) | |
a_p_idx = valid_pairs[:, 0] | |
n_idx = valid_pairs[:, 1] | |
anchor_samples = anchor_embs[a_p_idx] | |
positive_samples = positive_embs[a_p_idx] | |
negative_samples = positive_embs[n_idx] | |
loss = criterion(anchor_samples, positive_samples, negative_samples) | |
loss = loss[loss > 0].mean() | |
if not loss.isnan().item(): | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
running_loss.append(loss.item()) | |
print(f"NaN's percentage in train set: {np.isnan(running_loss).sum() / len(running_loss)}", flush=True) | |
train_losses.append(np.nanmean(running_loss)) | |
model.eval() | |
with torch.no_grad(): | |
running_loss = [] | |
for anchor, positive in tqdm(val_dl): | |
anchor, positive = anchor.to(device), positive.to(device) | |
anchor_embs = model(anchor) | |
positive_embs = model(positive) | |
indices = np.array(np.meshgrid(list(range(len(anchor))), list(range(len(positive))))).T.reshape(-1, 2) | |
valid_pairs = indices[np.where(indices[:,0] != indices[:,1]),:].squeeze(0) | |
a_p_idx = valid_pairs[:, 0] | |
n_idx = valid_pairs[:, 1] | |
anchor_samples = anchor_embs[a_p_idx] | |
positive_samples = positive_embs[a_p_idx] | |
negative_samples = positive_embs[n_idx] | |
loss = criterion(anchor_samples, positive_samples, negative_samples) | |
loss = loss[loss > 0].mean() | |
running_loss.append(loss.item()) | |
print(f"NaN's percentage in validation set: {np.isnan(running_loss).sum() / len(running_loss)}", flush=True) | |
eval_losses.append(np.nanmean(running_loss)) | |
if iter % print_every == 0: | |
print("Calculating embeddings...", flush=True) | |
embs = load_embeddings(test_dl, model, device) | |
print("Random image retrieval example:", flush=True) | |
query = random.randint(0, len(embs)-1) | |
image_query = test_ds[query][0] | |
knn = retrieve_ktop(model, image_query, embs, k=5) | |
plot_k_retrievals(knn, image_query, test_ds, query, k=5) | |
print("Calculating retrieval success percentage (hit rate)...", flush=True) | |
p_accurate = retrieve_hitrate(model, embs, test_ds) | |
print(f"accurate retrievals: {p_accurate * 100}%", flush=True) | |
torch.save(model.state_dict(), f"mildnet_224_bal_epoch_{iter}.pt") | |
print(f"epoch iteration: {iter}/{n_epochs}, train loss: {train_losses[-1]}, evaluation loss: {eval_losses[-1]}", flush=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment