Created
March 5, 2021 06:42
-
-
Save jaircastruita/428bf1e8da997044f897ce7147cc5bc8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class MildNet(nn.Module): | |
''' | |
Reference: | |
https://github.com/gofynd/mildnet/blob/master/trainer/model.py | |
''' | |
def __init__(self): | |
super(MildNet, self).__init__() | |
# VGG16 part | |
self.convblock1 = nn.Sequential( | |
nn.Conv2d(3, 64, kernel_size=3, padding=1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(kernel_size=2, stride=2) | |
) | |
self.convblock2 = nn.Sequential( | |
nn.Conv2d(64, 128, kernel_size=3, padding=1), | |
nn.BatchNorm2d(128), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(kernel_size=2, stride=2) | |
) | |
self.convblock3 = nn.Sequential( | |
nn.Conv2d(128, 256, kernel_size=3, padding=1), | |
nn.Conv2d(256, 256, kernel_size=3, padding=1), | |
nn.BatchNorm2d(256), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(kernel_size=2, stride=2) | |
) | |
self.convblock4 = nn.Sequential( | |
nn.Conv2d(256, 512, kernel_size=3, padding=1), | |
nn.Conv2d(512, 512, kernel_size=3, padding=1), | |
nn.BatchNorm2d(512), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(kernel_size=2, stride=2) | |
) | |
self.convblock5 = nn.Sequential( | |
nn.Conv2d(512, 512, kernel_size=3, padding=1), | |
nn.Conv2d(512, 512, kernel_size=3, padding=1), | |
nn.BatchNorm2d(512), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(kernel_size=2, stride=2) | |
) | |
# Embedding output | |
self.fc1 = nn.Linear(1472, 2048) | |
self.dropout = nn.Dropout(p=0.5) | |
self.fc2 = nn.Linear(2048, 2048) | |
def forward(self, X): | |
out1 = self.convblock1(X) | |
out2 = self.convblock2(out1) | |
out3 = self.convblock3(out2) | |
out4 = self.convblock4(out3) | |
out5 = self.convblock5(out4) | |
agp1 = torch.mean(out1, dim=(2, 3)) | |
agp2 = torch.mean(out2, dim=(2, 3)) | |
agp3 = torch.mean(out3, dim=(2, 3)) | |
agp4 = torch.mean(out4, dim=(2, 3)) | |
agp5 = torch.mean(out5, dim=(2, 3)) | |
emb = torch.cat([agp1, agp2, agp3, agp4, agp5], dim=1) | |
out = self.fc1(emb) | |
out = F.relu(out) | |
out = self.dropout(out) | |
out = self.fc2(out) | |
out = F.relu(out) | |
out = F.normalize(out, dim=1, p=2) | |
return out |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment