Created
October 5, 2024 10:05
-
-
Save itrobotics/dccfb73fa69f04a06c94642a9a3f658c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: UTF-8 -*- | |
""" | |
https://blog.ittraining.com.tw/2024/10/normal-distribution.html | |
""" | |
import numpy as np | |
import matplotlib.pyplot as plt | |
#from matplotlib.mlab import bivariate_normal | |
def bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0, | |
mux=0.0, muy=0.0, sigmaxy=0.0): | |
""" | |
Bivariate Gaussian distribution for equal shape *X*, *Y*. | |
See `bivariate normal | |
<http://mathworld.wolfram.com/BivariateNormalDistribution.html>`_ | |
at mathworld. | |
""" | |
Xmu = X-mux | |
Ymu = Y-muy | |
rho = sigmaxy/(sigmax*sigmay) | |
z = Xmu**2/sigmax**2 + Ymu**2/sigmay**2 - 2*rho*Xmu*Ymu/(sigmax*sigmay) | |
denom = 2*np.pi*sigmax*sigmay*np.sqrt(1-rho**2) | |
return np.exp(-z/(2*(1-rho**2))) / denom | |
def generateData(n, mean, cov): | |
""" | |
generate normal distibution data | |
""" | |
np.random.seed(2033) | |
data = np.random.multivariate_normal(mean, cov, size=n) | |
return data | |
def drawData(ax, mu, cov): | |
data = generateData(150, mu, cov) | |
ax.scatter(data[:, 0], data[:, 1]) | |
x = np.arange(-10, 10, 0.1) | |
X, Y = np.meshgrid(x, x) # 依據 meshgird(x,x)產生的點, 共有x*x個點, | |
# 傳回這些點的X及Y, 故 X's shape (x,x), Y's shape(x,x) | |
Z = bivariate_normal(X, Y, cov[0, 0], cov[1, 1], mu[0], mu[1], cov[0, 1]) | |
ax.contour(X, Y, Z) | |
ax.set_xlim([-10, 10]) | |
ax.set_ylim([-10, 10]) | |
ax.get_yaxis().set_visible(False) | |
ax.get_xaxis().set_visible(False) | |
def visualize(): | |
""" | |
visualize | |
""" | |
fig = plt.figure(figsize=(10, 10), dpi=80) | |
ax = fig.add_subplot(2, 2, 1) | |
cov = np.array([[1., 0.], | |
[0., 1.]]) | |
mu = np.array([0., 0.]) | |
drawData(ax, mu, cov) | |
ax = fig.add_subplot(2, 2, 2) | |
cov = np.array([[4., 0.], | |
[0., 4.]]) | |
mu = np.array([0., 0.]) | |
drawData(ax, mu, cov) | |
ax = fig.add_subplot(2, 2, 3) | |
cov = np.array([[4., 3.], | |
[3., 4.]]) | |
mu = np.array([0., 0.]) | |
drawData(ax, mu, cov) | |
ax = fig.add_subplot(2, 2, 4) | |
cov = np.array([[4., -3.], | |
[-3., 4.]]) | |
mu = np.array([0., 0.]) | |
drawData(ax, mu, cov) | |
plt.show() | |
if __name__ == "__main__": | |
visualize() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment