Created
June 9, 2019 13:32
-
-
Save irvin373/275cff94b9cf05c01cbb97e170a494f8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
class Perceptron(object): | |
def __init__(self, no_of_inputs, threshold=100, learning_rate=0.01): | |
self.threshold = threshold | |
self.learning_rate = learning_rate | |
self.weights = np.zeros(no_of_inputs + 1) | |
def predict(self, inputs): | |
summation = np.dot(inputs, self.weights[1:]) + self.weights[0] | |
if summation > 0: | |
activation = 1 | |
else: | |
activation = 0 | |
return activation | |
def train(self, training_inputs, labels): | |
for _ in range(self.threshold): | |
for inputs, label in zip(training_inputs, labels): | |
prediction = self.predict(inputs) | |
self.weights[1:] += self.learning_rate * (label - prediction) * inputs | |
self.weights[0] += self.learning_rate * (label - prediction) | |
training_inputs = [] | |
training_inputs.append(np.array([1, 1])) | |
training_inputs.append(np.array([1, 0])) | |
training_inputs.append(np.array([0, 1])) | |
training_inputs.append(np.array([0, 0])) | |
labels = np.array([1, 0, 0, 0]) | |
perceptron = Perceptron(2) | |
perceptron.train(training_inputs, labels) | |
inputs = np.array([1, 1]) | |
print(perceptron.predict(inputs)) | |
#=> 1 | |
inputs = np.array([0, 1]) | |
print(perceptron.predict(inputs)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment