Created
August 4, 2020 07:07
-
-
Save huchenxucs/e0c70624862b05c25b3b8766c6c2213c to your computer and use it in GitHub Desktop.
Masked Conv1d
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Conv1dWithMask(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size=3, bias=True, w_init_gain='linear'): | |
super(Conv1dWithMask, self).__init__() | |
assert kernel_size > 1, f"Conv1dWithMask kernel size must greater than 1" | |
self.kernel_size = kernel_size | |
self.out_channels = out_channels | |
self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, bias=bias) | |
torch.nn.init.xavier_uniform_( | |
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) | |
def forward(self, x, mask=None): | |
""" | |
:param x: [B, H, T] | |
:param mask: [B, T, T], e.g.: | |
tensor([[[1., 1., 0., 0., 0., 0., 0., 0.], | |
[1., 1., 0., 0., 0., 0., 0., 0.], | |
[1., 1., 1., 1., 0., 0., 0., 0.], | |
[1., 1., 1., 1., 0., 0., 0., 0.], | |
[1., 1., 1., 1., 1., 1., 1., 1.], | |
[1., 1., 1., 1., 1., 1., 1., 1.], | |
[1., 1., 1., 1., 1., 1., 1., 1.], | |
[1., 1., 1., 1., 1., 1., 1., 1.]], ...]) | |
:return: [B, H', T] | |
""" | |
if isinstance(x, list): | |
assert len(x) == 2 | |
x, mask = x[0], x[1] | |
assert mask is not None | |
x = x.permute(0, 2, 1) # [B, H, T] -> [B, T, H] | |
kernel_size = self.kernel_size | |
B, T, H = x.shape | |
mask_pad = F.pad(mask, [kernel_size // 2, kernel_size // 2]) | |
mask_pad_shift = torch.cat([mask_pad[:, :, :-1].reshape(B, -1), mask_pad[:, :, -1]], -1) | |
mask_pad_shift = mask_pad_shift.reshape(B, T, -1)[:, :, :kernel_size] | |
mask_pad_shift = mask_pad_shift.reshape(-1, 1, kernel_size).float() # [B*T, 1, K] | |
x_pad = F.pad(x, [0, 0, kernel_size // 2, kernel_size // 2], value=0) # [B, T+K-1, H] | |
x_unfold = x_pad.unfold(1, kernel_size, 1) # [B, T, H, K] | |
x_unfold = x_unfold.reshape(-1, H, kernel_size) # [B*T, H, K] | |
x_conv = self.conv(x_unfold * mask_pad_shift) # [B*T, H', 1] | |
x_conv = x_conv.reshape(B, T, self.out_channels) # [B, T, H'] | |
x_conv = x_conv.permute(0, 2, 1) # [B, H', T] | |
return x_conv |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment