Last active
February 24, 2017 18:19
-
-
Save hhbyyh/889b88ae2176d1263fdc9dd3e29d1c2d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Licensed to the Apache Software Foundation (ASF) under one or more | |
* contributor license agreements. See the NOTICE file distributed with | |
* this work for additional information regarding copyright ownership. | |
* The ASF licenses this file to You under the Apache License, Version 2.0 | |
* (the "License"); you may not use this file except in compliance with | |
* the License. You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
*/ | |
package org.apache.spark.ml.fpm | |
import javassist.bytecode.stackmap.TypeTag | |
import scala.collection.mutable.ArrayBuffer | |
import scala.reflect.ClassTag | |
import org.apache.hadoop.fs.Path | |
import org.apache.spark.annotation.{Experimental, Since} | |
import org.apache.spark.ml.{Estimator, Model} | |
import org.apache.spark.ml.param._ | |
import org.apache.spark.ml.param.shared.{HasFeaturesCol, HasPredictionCol} | |
import org.apache.spark.ml.util._ | |
import org.apache.spark.mllib.fpm.{AssociationRules => MLlibAssociationRules, FPGrowth => MLlibFPGrowth} | |
import org.apache.spark.mllib.fpm.FPGrowth.FreqItemset | |
import org.apache.spark.sql._ | |
import org.apache.spark.sql.functions._ | |
import org.apache.spark.sql.types._ | |
/** | |
* Common params for FPGrowth and FPGrowthModel | |
*/ | |
private[fpm] trait FPGrowthParams extends Params with HasFeaturesCol with HasPredictionCol { | |
/** | |
* Minimal support level of the frequent pattern. [0.0, 1.0]. Any pattern that appears | |
* more than (minSupport * size-of-the-dataset) times will be output | |
* Default: 0.3 | |
* @group param | |
*/ | |
@Since("2.2.0") | |
val minSupport: DoubleParam = new DoubleParam(this, "minSupport", | |
"the minimal support level of a frequent pattern", | |
ParamValidators.inRange(0.0, 1.0)) | |
setDefault(minSupport -> 0.3) | |
/** @group getParam */ | |
@Since("2.2.0") | |
def getMinSupport: Double = $(minSupport) | |
/** | |
* Number of partitions (>=1) used by parallel FP-growth. By default the param is not set, and | |
* partition number of the input dataset is used. | |
* @group expertParam | |
*/ | |
@Since("2.2.0") | |
val numPartitions: IntParam = new IntParam(this, "numPartitions", | |
"Number of partitions used by parallel FP-growth", ParamValidators.gtEq[Int](1)) | |
/** @group expertGetParam */ | |
@Since("2.2.0") | |
def getNumPartitions: Int = $(numPartitions) | |
/** | |
* Minimal confidence for generating Association Rule. | |
* Note that minConfidence has no effect during fitting. | |
* Default: 0.8 | |
* @group param | |
*/ | |
@Since("2.2.0") | |
val minConfidence: DoubleParam = new DoubleParam(this, "minConfidence", | |
"minimal confidence for generating Association Rule", | |
ParamValidators.inRange(0.0, 1.0)) | |
setDefault(minConfidence -> 0.8) | |
/** @group getParam */ | |
@Since("2.2.0") | |
def getMinConfidence: Double = $(minConfidence) | |
/** | |
* Validates and transforms the input schema. | |
* @param schema input schema | |
* @return output schema | |
*/ | |
@Since("2.2.0") | |
protected def validateAndTransformSchema(schema: StructType): StructType = { | |
val inputType = schema($(featuresCol)).dataType | |
require(inputType.isInstanceOf[ArrayType], | |
s"The input column must be ArrayType, but got $inputType.") | |
SchemaUtils.appendColumn(schema, $(predictionCol), schema($(featuresCol)).dataType) | |
} | |
} | |
/** | |
* :: Experimental :: | |
* A parallel FP-growth algorithm to mine frequent itemsets. The algorithm is described in | |
* <a href="http://dx.doi.org/10.1145/1454008.1454027">Li et al., PFP: Parallel FP-Growth for Query | |
* Recommendation</a>. PFP distributes computation in such a way that each worker executes an | |
* independent group of mining tasks. The FP-Growth algorithm is described in | |
* <a href="http://dx.doi.org/10.1145/335191.335372">Han et al., Mining frequent patterns without | |
* candidate generation</a>. Note null values in the feature column are ignored during fit(). | |
* | |
* @see <a href="http://en.wikipedia.org/wiki/Association_rule_learning"> | |
* Association rule learning (Wikipedia)</a> | |
*/ | |
@Since("2.2.0") | |
@Experimental | |
class FPGrowth @Since("2.2.0") ( | |
@Since("2.2.0") override val uid: String) | |
extends Estimator[FPGrowthModel] with FPGrowthParams with DefaultParamsWritable { | |
@Since("2.2.0") | |
def this() = this(Identifiable.randomUID("fpgrowth")) | |
/** @group setParam */ | |
@Since("2.2.0") | |
def setMinSupport(value: Double): this.type = set(minSupport, value) | |
/** @group expertSetParam */ | |
@Since("2.2.0") | |
def setNumPartitions(value: Int): this.type = set(numPartitions, value) | |
/** @group setParam */ | |
@Since("2.2.0") | |
def setMinConfidence(value: Double): this.type = set(minConfidence, value) | |
/** @group setParam */ | |
@Since("2.2.0") | |
def setFeaturesCol(value: String): this.type = set(featuresCol, value) | |
/** @group setParam */ | |
@Since("2.2.0") | |
def setPredictionCol(value: String): this.type = set(predictionCol, value) | |
@Since("2.2.0") | |
override def fit(dataset: Dataset[_]): FPGrowthModel = { | |
transformSchema(dataset.schema, logging = true) | |
genericFit(dataset) | |
} | |
private def genericFit[T: ClassTag](dataset: Dataset[_]): FPGrowthModel = { | |
val data = dataset.select($(featuresCol)) | |
val items = data.where(col($(featuresCol)).isNotNull).rdd.map(r => r.getSeq[T](0).toArray) | |
val mllibFP = new MLlibFPGrowth().setMinSupport($(minSupport)) | |
if (isSet(numPartitions)) { | |
mllibFP.setNumPartitions($(numPartitions)) | |
} | |
val parentModel = mllibFP.run(items) | |
val rows = parentModel.freqItemsets.map(f => Row(f.items, f.freq)) | |
val schema = StructType(Seq( | |
StructField("items", dataset.schema($(featuresCol)).dataType, nullable = false), | |
StructField("freq", LongType, nullable = false))) | |
val frequentItems = dataset.sparkSession.createDataFrame(rows, schema) | |
copyValues(new FPGrowthModel(uid, frequentItems)).setParent(this) | |
} | |
@Since("2.2.0") | |
override def transformSchema(schema: StructType): StructType = { | |
validateAndTransformSchema(schema) | |
} | |
@Since("2.2.0") | |
override def copy(extra: ParamMap): FPGrowth = defaultCopy(extra) | |
} | |
@Since("2.2.0") | |
object FPGrowth extends DefaultParamsReadable[FPGrowth] { | |
@Since("2.2.0") | |
override def load(path: String): FPGrowth = super.load(path) | |
} | |
/** | |
* :: Experimental :: | |
* Model fitted by FPGrowth. | |
* | |
* @param freqItemsets frequent items in the format of DataFrame("items"[Seq], "freq"[Long]) | |
*/ | |
@Since("2.2.0") | |
@Experimental | |
class FPGrowthModel private[ml] ( | |
@Since("2.2.0") override val uid: String, | |
@transient val freqItemsets: DataFrame) | |
extends Model[FPGrowthModel] with FPGrowthParams with MLWritable { | |
/** @group setParam */ | |
@Since("2.2.0") | |
def setMinConfidence(value: Double): this.type = set(minConfidence, value) | |
/** @group setParam */ | |
@Since("2.2.0") | |
def setFeaturesCol(value: String): this.type = set(featuresCol, value) | |
/** @group setParam */ | |
@Since("2.2.0") | |
def setPredictionCol(value: String): this.type = set(predictionCol, value) | |
/** | |
* Get association rules fitted by AssociationRules using the minConfidence. Returns a dataframe | |
* with three fields, "antecedent", "consequent" and "confidence", where "antecedent" and | |
* "consequent" are Array[T] and "confidence" is Double. | |
*/ | |
@Since("2.2.0") | |
@transient lazy val associationRules: DataFrame = { | |
val freqItems = freqItemsets | |
AssociationRules.getAssociationRulesFromFP(freqItems, "items", "freq", $(minConfidence)) | |
} | |
/** | |
* The transform method first generates the association rules according to the frequent itemsets. | |
* Then for each association rule, it will examine the input items against antecedents and | |
* summarize the consequents as prediction. The prediction column has the same data type as the | |
* input column. (Array[T]) | |
* Note that internally it uses Cartesian join and may exhaust memory for large datasets. null | |
* values in the feature columns are treated as empty sets. | |
*/ | |
@Since("2.2.0") | |
override def transform(dataset: Dataset[_]): DataFrame = { | |
transformSchema(dataset.schema, logging = true) | |
genericTransform(dataset) | |
} | |
private def genericTransform[T](dataset: Dataset[_]): DataFrame = { | |
// use index to perform the join and aggregateByKey, and keep the original order after join. | |
val indexToItems = dataset.select($(featuresCol)).rdd.map(r => r.getSeq[T](0)) | |
.zipWithIndex().map(_.swap) | |
val rulesRDD = associationRules.select("antecedent", "consequent").rdd | |
.map(r => (r.getSeq[T](0), r.getSeq[T](1))) | |
val indexToConsequents = indexToItems.cartesian(rulesRDD).map { | |
case ((id, items), (antecedent, consequent)) => | |
val consequents = if (items != null) { | |
val itemSet = items.toSet | |
if (antecedent.forall(itemSet.contains)) { | |
consequent.filterNot(itemSet.contains) | |
} else { | |
Seq.empty | |
} | |
} else { | |
Seq.empty | |
} | |
// println(id) | |
(id, consequents) | |
}.aggregateByKey(new ArrayBuffer[T])((ar, seq) => ar ++= seq, (ar, seq) => ar ++= seq) | |
.map { case (index, cons) => (index, cons.distinct) } | |
println(indexToConsequents.count()) | |
val rowAndConsequents = dataset.toDF().rdd.zipWithUniqueId().map(_.swap) | |
.join(indexToConsequents)//.sortByKey(ascending = true, dataset.rdd.getNumPartitions) | |
.map(_._2).map(t => Row.merge(t._1, Row(t._2))) | |
val mergedSchema = dataset.schema.add(StructField($(predictionCol), | |
dataset.schema($(featuresCol)).dataType, dataset.schema($(featuresCol)).nullable)) | |
dataset.sparkSession.createDataFrame(rowAndConsequents, mergedSchema) | |
} | |
private def genericTransform2[T](dataset: Dataset[_]): DataFrame = { | |
val itemsRDD = dataset.select($(featuresCol)).rdd.map(r => r.getSeq[T](0)).distinct() | |
val rulesRDD = associationRules.rdd.map(r => (r.getSeq[T](0), r.getSeq[T](1))) | |
val itemsWithConsequents = itemsRDD.cartesian(rulesRDD).map { | |
case ((items), (antecedent, consequent)) => | |
val itemSet = items.toSet | |
val consequents = if (antecedent.forall(itemSet.contains(_))) consequent else Seq.empty | |
(items, consequents) | |
}.aggregateByKey(new ArrayBuffer[T])( | |
(ar, seq) => ar ++= seq, (ar, seq) => ar ++= seq) | |
.map (cols => Row(cols._1, cols._2)) | |
val dt = dataset.schema($(featuresCol)).dataType | |
val fields = Array($(featuresCol), $(predictionCol)) | |
.map(fieldName => StructField(fieldName, dt, nullable = true)) | |
val schema = StructType(fields) | |
val mapping = dataset.sparkSession.createDataFrame(itemsWithConsequents, schema) | |
dataset.join(mapping, $(featuresCol)) | |
} | |
private def genericTransform3[T](dataset: Dataset[_]): DataFrame = { | |
// use unique id to perform the join and aggregateByKey | |
val itemsRDD = dataset.select($(featuresCol)).rdd.map(r => r.getSeq[T](0)) | |
.distinct().zipWithUniqueId().map(_.swap).cache() | |
val rulesRDD = associationRules.rdd.map(r => (r.getSeq[T](0), r.getSeq[T](1))) | |
val itemsWithConsequents = itemsRDD.cartesian(rulesRDD).map { | |
case ((id, items), (antecedent, consequent)) => | |
val itemSet = items.toSet | |
val consequents = if (antecedent.forall(itemSet.contains(_))) consequent else Seq.empty | |
(id, consequents) | |
}.aggregateByKey(new ArrayBuffer[T])( | |
(ar, seq) => ar ++= seq, (ar, seq) => ar ++= seq) | |
val mappingRDD = itemsRDD.join(itemsWithConsequents) | |
.map { case (id, (items, consequent)) => (items, consequent) } | |
.map (cols => Row(cols._1, cols._2)) | |
val dt = dataset.schema($(featuresCol)).dataType | |
val fields = Array($(featuresCol), $(predictionCol)) | |
.map(fieldName => StructField(fieldName, dt, nullable = true)) | |
val schema = StructType(fields) | |
val mapping = dataset.sparkSession.createDataFrame(mappingRDD, schema) | |
dataset.join(mapping, $(featuresCol)) | |
} | |
private def genericTransform4[T: Manifest](dataset: Dataset[_]): DataFrame = { | |
val rules = associationRules.rdd.map(r => | |
(r.getSeq[Int](0), r.getSeq[Int](1)) | |
).collect() | |
val brRules = dataset.sparkSession.sparkContext.broadcast(rules) | |
// For each rule, examine the input items and summarize the consequents | |
val predictUDF = udf((items: Seq[Int]) => brRules.value.flatMap( r => | |
if (r._1.forall(items.contains(_))) r._2 else Seq.empty[Int] | |
).distinct) | |
dataset.withColumn($(predictionCol), predictUDF(col($(featuresCol)))) | |
} | |
@Since("2.2.0") | |
override def transformSchema(schema: StructType): StructType = { | |
validateAndTransformSchema(schema) | |
} | |
@Since("2.2.0") | |
override def copy(extra: ParamMap): FPGrowthModel = { | |
val copied = new FPGrowthModel(uid, freqItemsets) | |
copyValues(copied, extra).setParent(this.parent) | |
} | |
@Since("2.2.0") | |
override def write: MLWriter = new FPGrowthModel.FPGrowthModelWriter(this) | |
} | |
@Since("2.2.0") | |
object FPGrowthModel extends MLReadable[FPGrowthModel] { | |
@Since("2.2.0") | |
override def read: MLReader[FPGrowthModel] = new FPGrowthModelReader | |
@Since("2.2.0") | |
override def load(path: String): FPGrowthModel = super.load(path) | |
/** [[MLWriter]] instance for [[FPGrowthModel]] */ | |
private[FPGrowthModel] | |
class FPGrowthModelWriter(instance: FPGrowthModel) extends MLWriter { | |
override protected def saveImpl(path: String): Unit = { | |
DefaultParamsWriter.saveMetadata(instance, path, sc) | |
val dataPath = new Path(path, "data").toString | |
instance.freqItemsets.write.parquet(dataPath) | |
} | |
} | |
private class FPGrowthModelReader extends MLReader[FPGrowthModel] { | |
/** Checked against metadata when loading model */ | |
private val className = classOf[FPGrowthModel].getName | |
override def load(path: String): FPGrowthModel = { | |
val metadata = DefaultParamsReader.loadMetadata(path, sc, className) | |
val dataPath = new Path(path, "data").toString | |
val frequentItems = sparkSession.read.parquet(dataPath) | |
val model = new FPGrowthModel(metadata.uid, frequentItems) | |
DefaultParamsReader.getAndSetParams(model, metadata) | |
model | |
} | |
} | |
} | |
private[fpm] object AssociationRules { | |
/** | |
* Computes the association rules with confidence above minConfidence. | |
* @param dataset DataFrame("items", "freq") containing frequent itemset obtained from | |
* algorithms like [[FPGrowth]]. | |
* @param itemsCol column name for frequent itemsets | |
* @param freqCol column name for frequent itemsets count | |
* @param minConfidence minimum confidence for the result association rules | |
* @return a DataFrame("antecedent", "consequent", "confidence") containing the association | |
* rules. | |
*/ | |
def getAssociationRulesFromFP[T: ClassTag]( | |
dataset: Dataset[_], | |
itemsCol: String, | |
freqCol: String, | |
minConfidence: Double): DataFrame = { | |
val freqItemSetRdd = dataset.select(itemsCol, freqCol).rdd | |
.map(row => new FreqItemset(row.getSeq[T](0).toArray, row.getLong(1))) | |
val rows = new MLlibAssociationRules() | |
.setMinConfidence(minConfidence) | |
.run(freqItemSetRdd) | |
.map(r => Row(r.antecedent, r.consequent, r.confidence)) | |
val dt = dataset.schema(itemsCol).dataType | |
val schema = StructType(Seq( | |
StructField("antecedent", dt, nullable = false), | |
StructField("consequent", dt, nullable = false), | |
StructField("confidence", DoubleType, nullable = false))) | |
val rules = dataset.sparkSession.createDataFrame(rows, schema) | |
rules | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment