Last active
June 26, 2019 14:57
-
-
Save heolin/58930bca179506e86c2438b635b3732a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
import random | |
# neural network predicting if input hour is 21:37 | |
# network created with layers of size: [73 21] | |
# because of small number of neurons if may take few tries to read good results (around 0.98 accuracy) | |
X, y = [], [] | |
for _ in range(10000): | |
h, m = random.randint(0, 23), random.randint(0, 59) | |
if h == 21 and m == 37: | |
y.append([1, 0]) | |
else: | |
y.append([0, 1]) | |
X.append([h, m]) | |
for _ in range(10000): | |
X.append([21, 37]) | |
y.append([1, 0]) | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) | |
model = tf.keras.Sequential([ | |
tf.keras.layers.Dense(7, activation='relu', input_shape=(2,)), | |
tf.keras.layers.Dense(3, activation='relu'), | |
tf.keras.layers.Dense(1, activation='relu'), | |
tf.keras.layers.Dense(2, activation='softmax') | |
]) | |
model.compile(optimizer='rmsprop', | |
loss='categorical_crossentropy', | |
metrics=['accuracy']) | |
n = model.fit(np.array(X_train), np.array(y_train), | |
batch_size=100, epochs=10, | |
validation_data=(np.array(X_test), np.array(y_test))) | |
y_pred = model.predict(np.array([ | |
[10, 20], # 0.07371756 | |
[21, 20], # 0.07371756 | |
[20, 37], # 0.89896834 | |
[21, 38], # 0.96462727 | |
[21, 39], # 0.92450625 | |
[21, 37], # 0.9837998 | |
])) | |
for _y in y_pred: | |
print(_y[0]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment