Last active
March 27, 2019 06:52
-
-
Save gngdb/81049f9796d1292b672999f1c1f21ab7 to your computer and use it in GitHub Desktop.
how to use Defun to define custom gradients in Tensorflow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
from tensorflow.python.framework import function | |
@function.Defun() | |
def my_op_grad(op, grad): ### instead of my_op_grad(x) | |
return tf.sigmoid(op) | |
@function.Defun(grad_func=my_op_grad) | |
def my_op(a): | |
return tf.identity(a) | |
def main(): | |
a = tf.Variable(tf.constant([-5., 4., -3., 2., 1.], dtype=tf.float32)) | |
grad = tf.gradients(my_op(a), a) | |
sess = tf.Session() | |
sess.run(tf.global_variables_initializer()) | |
result = sess.run(grad) | |
print(result) | |
sess.close() | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment