Created
April 19, 2021 17:03
-
-
Save glemaitre/e8f2054a7022abc14fbcaa9769131293 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# %% | |
from sklearn.datasets import fetch_openml | |
usps = fetch_openml(data_id=41082) | |
# %% | |
data = usps.data | |
target = usps.target | |
# %% | |
import numpy as np | |
img = np.reshape(data.iloc[0].to_numpy(), (16, 16)) | |
# %% | |
import matplotlib.pyplot as plt | |
plt.imshow(img) | |
# %% | |
from sklearn.model_selection import train_test_split | |
data_rest, data_train, target_rest, target_train = train_test_split( | |
data, target, stratify=target, random_state=42, test_size=100, | |
) | |
data_rest, data_test, target_rest, target_test = train_test_split( | |
data_rest, target_rest, stratify=target_rest, random_state=42, | |
test_size=100, | |
) | |
data_train, data_test = data_train.to_numpy(), data_test.to_numpy() | |
# %% | |
fig, axs = plt.subplots(nrows=10, ncols=10, figsize=(15, 15)) | |
for img, ax in zip(data_test, axs.ravel()): | |
ax.imshow(img.reshape((16, 16)), cmap="Greys") | |
ax.axis("off") | |
_ = fig.suptitle("Uncorrupted test dataset") | |
# %% | |
rng = np.random.RandomState(0) | |
noise = rng.normal(scale=0.5, size=(data_train.shape)) | |
data_test_corrupted = data_test + noise | |
# %% | |
fig, axs = plt.subplots(nrows=10, ncols=10, figsize=(15, 15)) | |
for img, ax in zip(data_test_corrupted, axs.ravel()): | |
ax.imshow(img.reshape((16, 16)), cmap="Greys") | |
ax.axis("off") | |
_ = fig.suptitle( | |
f"Corrupted test data: " | |
f"MSE={np.mean((data_test - data_test_corrupted) ** 2):.2f}", | |
size=26, | |
) | |
# %% | |
from sklearn.decomposition import KernelPCA | |
kpca = KernelPCA( | |
n_components=80, kernel="rbf", gamma=0.5, fit_inverse_transform=True, | |
alpha=10, | |
) | |
# %% | |
kpca.fit(data_train) | |
# %% | |
import pandas as pd | |
data_reconstruct = kpca.inverse_transform(kpca.transform(data_test)) | |
# %% | |
fig, axs = plt.subplots(nrows=10, ncols=10, figsize=(15, 15)) | |
for img, ax in zip(data_reconstruct, axs.ravel()): | |
ax.imshow(img.reshape((16, 16)), cmap="Greys") | |
ax.axis("off") | |
_ = fig.suptitle( | |
f"Denoising using Kernel PCA with RBF kernel: " | |
f"MSE={np.mean((data_test - data_reconstruct) ** 2):.2f}", | |
size=26, | |
) | |
# %% | |
from sklearn.decomposition import PCA | |
pca = PCA(n_components=32) | |
pca.fit(data_train) | |
data_reconstruct = pca.inverse_transform(pca.transform(data_test_corrupted)) | |
# %% | |
fig, axs = plt.subplots(nrows=10, ncols=10, figsize=(15, 15)) | |
for img, ax in zip(data_reconstruct, axs.ravel()): | |
ax.imshow(img.reshape((16, 16)), cmap="Greys") | |
ax.axis("off") | |
_ = fig.suptitle( | |
f"Denosing using PCA: " | |
f"MSE={np.mean((data_test - data_reconstruct) ** 2):.2f}", | |
size=26 | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment