Last active
December 22, 2021 13:52
-
-
Save gau-nernst/d5828aafaa93071f5c23e0e78b58f984 to your computer and use it in GitHub Desktop.
Torchvision feature extractor
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from torch import nn | |
from torchvision.models import resnet, mobilenet, efficientnet | |
from torchvision.models.feature_extraction import create_feature_extractor | |
class _Extractor(nn.Module): | |
def __init__(self, backbone, node_names): | |
super().__init__() | |
self.feat_extractor = create_feature_extractor(backbone, node_names) | |
self.feat_extractor.eval() | |
with torch.no_grad(): | |
out_channels = [x.shape[1] for x in self.feat_extractor(torch.rand(1,3,224,224)).values()] | |
self.out_channels = tuple(out_channels) | |
def forward(self, x): | |
return self.feat_extractor(x).values() | |
class ResNetExtractor(_Extractor): | |
def __init__(self, name, pretrained=False): | |
backbone = resnet.__dict__[name](pretrained=pretrained, progress=False) | |
node_names = ["relu", "layer1", "layer2", "layer3", "layer4"] | |
super().__init__(backbone, node_names) | |
class MobileNetExtractor(_Extractor): | |
def __init__(self, name, pretrained=False): | |
backbone = mobilenet.__dict__[name](pretrained=pretrained, progress=False) | |
# take output at expansion 1x1 conv | |
stage_indices = [i for i, b in enumerate(backbone.features) if getattr(b, "_is_cn", False)] | |
block_name = "conv" if name == "mobilenet_v2" else "block" | |
node_names = [f"features.{i}.{block_name}.0" for i in stage_indices] + [f"features.{len(backbone.features)-1}"] | |
super().__init__(backbone, node_names) | |
class EfficientNetExtractor(_Extractor): | |
def __init__(self, name, pretrained=False): | |
backbone = efficientnet.__dict__[name](pretrained=pretrained, progress=False) | |
# take output at expansion 1x1 conv | |
stage_indices = [2, 3, 4, 6] | |
node_names = [f"features.{i}.0.block.0" for i in stage_indices] + [f"features.{len(backbone.features)-1}"] | |
super().__init__(backbone, node_names) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment