Created
April 20, 2018 22:51
-
-
Save fmder/07fe6a284b688396fe891103d6c2344d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import itertools | |
import numpy | |
from deap import cma | |
class CovarianceConditionError(Exception): | |
pass | |
class StrategyMixedInteger(cma.Strategy): | |
def __init__(self, centroid, sigma, S, **params): | |
super(StrategyMixedInteger, self).__init__(centroid, sigma, **params) | |
self.S_int = numpy.array(S) | |
self.i_I_R = numpy.flatnonzero(2 * self.sigma * numpy.diag(self.C)**0.5 < self.S_int) | |
print(self.S_int) | |
def generate(self, ind_init): | |
# print(self.i_I_R) | |
n_I_R = self.i_I_R.shape[0] | |
lambda_int = None | |
if n_I_R == 0: | |
lambda_int = 0 | |
elif n_I_R >= self.dim: | |
lambda_int = int(numpy.floor(self.lambda_ / 2)) | |
else: | |
lambda_int = int(min(numpy.floor(self.lambda_ / 10) + n_I_R + 1, | |
numpy.floor(self.lambda_ / 2) - 1)) | |
indices_int = numpy.arange(lambda_int, dtype=int) | |
numpy.random.shuffle(indices_int) | |
Rp = numpy.zeros((self.lambda_, self.dim)) | |
Rpp = numpy.zeros((self.lambda_, self.dim)) | |
# Ri' has exactly one of its components set to one. | |
# The Ri' are dependent in that the number of mutations for each coordinate | |
# differs at most by one | |
for i, j in zip(indices_int, itertools.cycle(self.i_I_R)): | |
Rp[i, j] = 1 | |
Rpp[i, j] = numpy.random.geometric(p=0.7**(1.0/n_I_R)) - 1 | |
I_pm1 = (-1)**numpy.random.randint(0, 2, (self.lambda_, self.dim)) | |
R_int = I_pm1 * (Rp + Rpp) | |
if self.update_count > 0: | |
R_int[-1, :] = numpy.floor(-self.S_int - self.last_best) - numpy.floor(-self.S_int - self.centroid) | |
y = numpy.random.standard_normal((self.lambda_, self.dim)) | |
arz = self.centroid + self.sigma * numpy.dot(y, self.BD.T) + self.S_int * R_int | |
# The update method requires to remember the y of each individual | |
population = list(map(ind_init, arz)) | |
for ind, yi in zip(population, y): | |
ind.__y = yi | |
return population | |
def update(self, population): | |
population.sort(key=lambda ind: ind.fitness, reverse=True) | |
self.last_best = numpy.array(population[0]) | |
old_centroid = self.centroid | |
self.centroid = numpy.dot(self.weights, population[0:self.mu]) | |
z = numpy.array([ind.__y for ind in population[:self.mu]]) | |
zmean = numpy.dot(self.weights, z) | |
# Cumulation: update evolution path | |
self.ps = (1 - self.cs) * self.ps \ | |
+ numpy.sqrt(self.cs * (2 - self.cs) * self.mueff) \ | |
* numpy.dot(self.B, zmean) | |
self.update_count += 1 | |
hsig = float(numpy.sum(self.ps**2) / \ | |
(1 - (1 - self.cs)**(2 * self.update_count)) / self.dim \ | |
< 2 + 4 / (self.dim + 1)) | |
self.pc = (1 - self.cc) * self.pc \ | |
+ hsig * numpy.sqrt(self.cc * (2 - self.cc) * self.mueff) \ | |
* numpy.dot(self.BD, zmean) | |
if self.i_I_R.shape[0] == 0: | |
artmp = population[0:self.mu] - old_centroid | |
else: | |
artmp = z | |
self.C = (1 - self.ccov1 - self.ccovmu + (1 - hsig) | |
* self.ccov1 * self.cc * (2 - self.cc)) * self.C \ | |
+ self.ccov1 * numpy.outer(self.pc, self.pc) \ | |
+ self.ccovmu * numpy.dot((self.weights * artmp.T), artmp) \ | |
/ self.sigma ** 2 | |
if self.i_I_R.shape[0] == 0: | |
self.sigma *= numpy.exp(min(1, (numpy.linalg.norm(self.ps) / self.chiN - 1.)) | |
* self.cs / self.damps) | |
elif self.i_I_R.shape[0] < self.dim: | |
sig_ix = numpy.flatnonzero(self.sigma * numpy.diag(self.C)**0.5 * numpy.sqrt(1. / self.cs) > 0.2 * self.S_int) | |
M = sig_ix.shape[0] | |
self.sigma *= numpy.exp(min(1, numpy.linalg.norm(self.ps[sig_ix]) / \ | |
M**0.5 * (1. - 1. / (4. * M) + 1. / (21.*M**2))) \ | |
* self.cs / self.damps) | |
self.diagD, self.B = numpy.linalg.eigh(self.C) | |
indx = numpy.argsort(self.diagD) | |
self.cond = self.diagD[indx[-1]] / self.diagD[indx[0]] | |
self.diagD = self.diagD[indx] ** 0.5 | |
self.B = self.B[:, indx] | |
self.BD = self.B * self.diagD | |
self.i_I_R = numpy.flatnonzero(2 * self.sigma * numpy.diag(self.C)**0.5 < self.S_int) | |
if self.cond < 0: | |
raise CovarianceConditionError |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment