Created
July 31, 2019 17:41
-
-
Save fmassa/240e61616146a4a254c8a546e8afd29d to your computer and use it in GitHub Desktop.
Fused sparse adam with JIT
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import torch | |
from torch.optim.optimizer import Optimizer | |
class SparseAdam(Optimizer): | |
r"""Implements lazy version of Adam algorithm suitable for sparse tensors. | |
In this variant, only moments that show up in the gradient get updated, and | |
only those portions of the gradient get applied to the parameters. | |
Arguments: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-8) | |
.. _Adam\: A Method for Stochastic Optimization: | |
https://arxiv.org/abs/1412.6980 | |
""" | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8): | |
if not 0.0 < lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 < eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
defaults = dict(lr=lr, betas=betas, eps=eps) | |
super(SparseAdam, self).__init__(params, defaults) | |
def step_original(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
grad = p.grad.data | |
if not grad.is_sparse: | |
raise RuntimeError('SparseAdam does not support dense gradients, please consider Adam instead') | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state['step'] = 0 | |
# Exponential moving average of gradient values | |
state['exp_avg'] = torch.zeros_like(p.data) | |
# Exponential moving average of squared gradient values | |
state['exp_avg_sq'] = torch.zeros_like(p.data) | |
state['step'] += 1 | |
grad = grad.coalesce() # the update is non-linear so indices must be unique | |
grad_indices = grad._indices() | |
grad_values = grad._values() | |
size = grad.size() | |
def make_sparse(values): | |
constructor = grad.new | |
if grad_indices.dim() == 0 or values.dim() == 0: | |
return constructor().resize_as_(grad) | |
return constructor(grad_indices, values, size) | |
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
beta1, beta2 = group['betas'] | |
# Decay the first and second moment running average coefficient | |
# old <- b * old + (1 - b) * new | |
# <==> old += (1 - b) * (new - old) | |
old_exp_avg_values = exp_avg.sparse_mask(grad)._values() | |
exp_avg_update_values = grad_values.sub(old_exp_avg_values).mul_(1 - beta1) | |
exp_avg.add_(make_sparse(exp_avg_update_values)) | |
old_exp_avg_sq_values = exp_avg_sq.sparse_mask(grad)._values() | |
exp_avg_sq_update_values = grad_values.pow(2).sub_(old_exp_avg_sq_values).mul_(1 - beta2) | |
exp_avg_sq.add_(make_sparse(exp_avg_sq_update_values)) | |
# Dense addition again is intended, avoiding another sparse_mask | |
numer = exp_avg_update_values.add_(old_exp_avg_values) | |
exp_avg_sq_update_values.add_(old_exp_avg_sq_values) | |
denom = exp_avg_sq_update_values.sqrt_().add_(group['eps']) | |
del exp_avg_update_values, exp_avg_sq_update_values | |
bias_correction1 = 1 - beta1 ** state['step'] | |
bias_correction2 = 1 - beta2 ** state['step'] | |
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 | |
p.data.add_(make_sparse(-step_size * numer.div_(denom))) | |
return loss | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
grad = p.grad.data | |
if not grad.is_sparse: | |
raise RuntimeError('SparseAdam does not support dense gradients, please consider Adam instead') | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state['step'] = 0 | |
# Exponential moving average of gradient values | |
state['exp_avg'] = torch.zeros_like(p.data) | |
# Exponential moving average of squared gradient values | |
state['exp_avg_sq'] = torch.zeros_like(p.data) | |
state['step'] += 1 | |
grad = grad.coalesce() # the update is non-linear so indices must be unique | |
grad_indices = grad._indices() | |
grad_values = grad._values() | |
size = grad.size() | |
def make_sparse(values): | |
constructor = grad.new | |
if grad_indices.dim() == 0 or values.dim() == 0: | |
return constructor().resize_as_(grad) | |
return constructor(grad_indices, values, size) | |
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
beta1, beta2 = group['betas'] | |
# Decay the first and second moment running average coefficient | |
# old <- b * old + (1 - b) * new | |
# <==> old += (1 - b) * (new - old) | |
old_exp_avg_values = exp_avg.sparse_mask(grad)._values() | |
old_exp_avg_sq_values = exp_avg_sq.sparse_mask(grad)._values() | |
bias_correction1 = 1 - beta1 ** state['step'] | |
bias_correction2 = 1 - beta2 ** state['step'] | |
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 | |
exp_avg_step, exp_avg_sq_step, data_step = update_step( | |
grad_values, old_exp_avg_values, old_exp_avg_sq_values, beta1, beta2, | |
group['eps'], step_size) | |
exp_avg.add_(make_sparse(exp_avg_step)) | |
exp_avg_sq.add_(make_sparse(exp_avg_sq_step)) | |
p.data.add_(make_sparse(data_step)) | |
return loss | |
@torch.jit.script | |
def update_step(grad_values: torch.Tensor, | |
old_exp_avg_values: torch.Tensor, | |
old_exp_avg_sq_values: torch.Tensor, | |
beta1: float, beta2: float, | |
eps: float, step_size: float): | |
exp_avg_update_values = (grad_values - old_exp_avg_values) * (1 - beta1) | |
exp_avg_sq_update_values = (grad_values ** 2 - old_exp_avg_sq_values) * (1 - beta2) | |
numer = exp_avg_update_values + old_exp_avg_values | |
oo = exp_avg_sq_update_values + old_exp_avg_sq_values | |
denom = oo.sqrt() + eps | |
fact = -step_size * numer / denom | |
return exp_avg_update_values, exp_avg_sq_update_values, fact | |
def test(method): | |
device = torch.device('cuda') | |
torch.manual_seed(3) | |
N = 10 | |
K = 3 | |
param = [torch.rand(N, requires_grad=True, device=device)] | |
optim = SparseAdam(param, lr=1) | |
for i in range(10): | |
# create some random grad tensor | |
param[0].grad = torch.sparse_coo_tensor(torch.randint(0, N, size=(1, K), device=device), | |
torch.rand(K, device=device), size=(N,)) | |
# call optimizer.step | |
getattr(optim, method)() | |
print(param[0]) | |
if __name__ == "__main__": | |
test('step') | |
test('step_original') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment