Last active
June 8, 2021 16:47
-
-
Save fepegar/53f81de209eed8e90aa8b73675295b51 to your computer and use it in GitHub Desktop.
Script I used to create the GIF at https://torchio.readthedocs.io/transforms/transforms.html
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pathlib import Path | |
import torch | |
import torchvision | |
import numpy as np | |
from PIL import Image | |
import torchio as tio | |
from tqdm import trange | |
output_dir = Path('/tmp/transformed') | |
output_dir.mkdir(exist_ok=True) | |
image = tio.datasets.FPG().t1 | |
image = tio.ToCanonical()(image) | |
image = tio.Resample(0.5)(image) | |
rescale = tio.RescaleIntensity((0, 255), (1, 99)) | |
composed_transform = tio.Compose(( | |
tio.OneOf({ | |
tio.RandomElasticDeformation(): 2, | |
tio.RandomAffine(): 8, | |
}), | |
tio.RandomAnisotropy(p=0.2), | |
tio.RandomBiasField(p=0.2), | |
tio.RandomBlur(p=0.1), | |
tio.RandomGamma(p=0.1), | |
tio.RandomNoise(p=0.1), | |
tio.OneOf(( | |
tio.RandomGhosting(), | |
tio.RandomMotion(), | |
tio.RandomSpike(), | |
), | |
p=0.1, | |
), | |
rescale, | |
)) | |
spacing = image.spacing[0] | |
rows = 1 | |
for i in trange(6): | |
transform = rescale if i == 0 else composed_transform | |
num_images = rows ** 2 | |
images = [] | |
for j in trange(num_images, leave=False): | |
transformed = transform(image) | |
si, sj, sk = transformed.spatial_shape | |
slice = transformed.numpy()[0, si//2, :, :].astype(np.uint8) | |
slice = np.rot90(slice)[np.newaxis] | |
images.append(torch.from_numpy(slice.copy())) | |
tensor = torch.stack(images) | |
grid = torchvision.utils.make_grid( | |
tensor, | |
nrow=int(np.sqrt(num_images)), | |
padding=0, | |
) | |
name = f'{i}.png' | |
path = output_dir / name | |
Image.fromarray(grid.permute(1, 2, 0).numpy()).save(path) | |
old_spacing = image.spacing[0] | |
spacing = 2 * spacing | |
downsample = tio.Compose(( | |
tio.Blur(tio.Resample.get_sigma(2, old_spacing)), | |
tio.Resample(spacing), | |
)) | |
image = downsample(image) | |
rows *= 2 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment