Created
December 10, 2012 06:09
-
-
Save fannix/4248755 to your computer and use it in GitHub Desktop.
Unbalanced dataset classification and visualization
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pylab as pl | |
import sklearn | |
from sklearn import linear_model, svm | |
import numpy as np | |
from sklearn import datasets | |
X, y = datasets.make_classification(n_samples=100, n_features=2, n_redundant=0) | |
pl.scatter(X[:, 0], X[:, 1], c=y) | |
clr0 = linear_model.LogisticRegression() | |
clr0.fit(X, y) | |
clr0.predict(X).sum() | |
w = clr0.coef_[0] | |
a = -w[0] / w[1] | |
xx = np.linspace(-5, 5) | |
yy = a * xx - clr0.intercept_[0] / w[1] | |
pl.plot(xx, yy, 'k--', label='no weights') | |
clr1 = linear_model.LogisticRegression(class_weight={0: 0.9, 1: 0.1}) | |
clr1.fit(X, y) | |
print clr1.predict(X).sum() | |
w1 = clr1.coef_[0] | |
a1 = -w1[0] / w1[1] | |
xx1 = np.linspace(-5, 5) | |
yy1 = a * xx1 - clr1.intercept_[0] / w1[1] | |
pl.plot(xx1, yy1, 'k-', label='with weights') | |
clr2 = svm.SVC(kernel="linear", class_weight={0: 0.9, 1: 0.1}) | |
clr2.fit(X, y) | |
print clr2.predict(X).sum() | |
w2 = clr2.coef_[0] | |
a2 = -w2[0] / w2[1] | |
xx2 = np.linspace(-5, 5) | |
yy2 = a * xx2 - clr2.intercept_[0] / w2[1] | |
pl.plot(xx2, yy2, 'k-.', label='SVM with weights') | |
pl.legend() | |
pl.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment