Created
July 15, 2015 21:47
-
-
Save evanbiederstedt/72b0035ca4b9fce830c3 to your computer and use it in GitHub Desktop.
m^T C^-1 m values and scaling Civ
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
FIRST, FIND NO PEAK IN LF, NOISE PARAMETERS E-21 TO E-23 | |
CODE: | |
"""" | |
vary_x_samples125 = np.logspace(-8, -12, num=40) #num = 40 | |
sigma125 = np.logspace(-21, -23, num=40) | |
Sij = vary_x_samples125[:, None, None] * norm_matrix[1][None, :, :] | |
newSij = (1e21)*Sij # multiply S_ij by 1e12 | |
Nij = sigma125[:, None, None] * id_mat[None, :, :] | |
newNij = (1e21)*Nij | |
# Format 7/4pi * param * P_3(M) where param is the parameter we vary, C_l | |
# Sij.shape = (40, 3072, 3072) | |
Cij = newSij + newNij | |
#invCij = np.linalg.inv(Cij) | |
logdetC = np.linalg.slogdet(Cij) # returns sign and determinant; use logdetC[1] | |
# model_fit_terms = m^T C^-1 m | |
# | |
# model_fit_terms = np.array([np.dot(tempval.T , np.dot(invCij[i] , tempval) ) | |
# for i in range(invCij.shape[0])]) | |
# | |
model_fit_terms = np.array([np.dot(tempp.T , np.linalg.solve(Cij[i], tempp) ) for i in range(Cij.shape[0]) ]) | |
print "m^T c^-1 m terms are" | |
print model_fit_terms | |
print "******************" | |
print "logdetC terms are" | |
print logdetC[1] | |
print "******************" | |
print "Npix2pi term is" | |
print Npix2pi | |
"""" | |
OUTPUT: | |
m^T c^-1 m terms are | |
[ 9.45804805e+06 1.01483017e+07 1.10268075e+07 1.20673659e+07 | |
1.32689374e+07 1.46133094e+07 1.61825120e+07 1.79600153e+07 | |
1.99559126e+07 2.22256705e+07 2.47646632e+07 2.76424156e+07 | |
3.08855750e+07 3.45339903e+07 3.86587049e+07 4.33120503e+07 | |
4.85288998e+07 5.44131447e+07 6.10398347e+07 6.84991954e+07 | |
7.68939251e+07 8.63276615e+07 9.69909206e+07 1.08947713e+08 | |
1.22424263e+08 1.37576408e+08 1.54634394e+08 1.73828119e+08 | |
1.95434208e+08 2.19747753e+08 2.47115351e+08 2.77910405e+08 | |
3.12543652e+08 3.51552581e+08 3.95426692e+08 4.44811316e+08 | |
5.00390442e+08 5.62931595e+08 6.33312474e+08 7.12509516e+08] | |
****************** | |
logdetC terms are | |
[ 234.83595269 -125.48871852 -486.73629436 -848.73844692 | |
-1211.04772189 -1573.36162977 -1936.79205007 -2300.35381787 | |
-2662.82613924 -3026.67180777 -3389.29604324 -3752.32106286 | |
-4115.94072189 -4479.40823086 -4842.79499263 -5205.87784784 | |
-5569.53277853 -5933.18379399 -6296.59554129 -6660.37091899 | |
-7023.75150763 -7387.0944891 -7750.90452509 -8114.35002254 | |
-8477.84033831 -8841.49715615 -9205.03206405 -9568.51393667 | |
-9932.08545533 -10295.68073606 -10659.20465258 -11022.79171886 | |
-11386.33372681 -11749.98089605 -12113.47607432 -12477.02136508 | |
-12840.61843452 -13204.16794796 -13567.75960538 -13931.32768536] | |
****************** | |
Npix2pi term is | |
19301.9452637 | |
********************************************** | |
********************************************** | |
SECOND, REDUCE NOISE TO E-22 TO E-24, FIND A PEAK IN LF | |
CODE: | |
"""" | |
vary_x_samples123 = np.logspace(-8, -12, num=40) #num = 40 | |
sigma123 = np.logspace(-22, -24, num=40) | |
# | |
# Plot noise sigma from e-22 to e-24 | |
# | |
Sij = vary_x_samples123 [:, None, None] * norm_matrix[1][None, :, :] | |
newSij = (1e22)*Sij # multiply S_ij by 1e12 | |
Nij = sigma123[:, None, None] * id_mat[None, :, :] | |
newNij = (1e22)*Nij | |
# Format 7/4pi * param * P_3(M) where param is the parameter we vary, C_l | |
# Sij.shape = (40, 3072, 3072) | |
Cij = newSij + newNij | |
#invCij = np.linalg.inv(Cij) | |
logdetC = np.linalg.slogdet(Cij) # returns sign and determinant; use logdetC[1] | |
# model_fit_terms = m^T C^-1 m | |
# | |
# model_fit_terms = np.array([np.dot(tempval.T , np.dot(invCij[i] , tempval) ) | |
# for i in range(invCij.shape[0])]) | |
# | |
model_fit_terms = np.array([np.dot(tempp.T , np.linalg.solve(Cij[i], tempp) ) for i in range(Cij.shape[0]) ]) | |
print "m^T c^-1 m terms are" | |
print model_fit_terms | |
print "******************" | |
print "logdetC terms are" | |
print logdetC[1] | |
print "******************" | |
print "Npix2pi term is" | |
print Npix2pi | |
"""" | |
OUTPUT | |
m^T c^-1 m terms are | |
[ 1.16534465e+06 5.03576814e+06 1.18842066e+06 3.78456972e+06 | |
2.07230699e+06 1.16453569e+06 -7.41348447e+05 -3.92254528e+06 | |
-9.93526825e+06 -2.29984553e+07 -5.63527744e+07 -3.44097793e+08 | |
2.13719373e+08 1.10203181e+08 9.28265870e+07 8.26463737e+07 | |
8.06037248e+07 8.18050050e+07 8.54633954e+07 8.98256378e+07 | |
9.79018046e+07 1.05962829e+08 1.15393283e+08 1.26566259e+08 | |
1.39139646e+08 1.53686968e+08 1.70516270e+08 1.89068539e+08 | |
2.10547663e+08 2.34462101e+08 2.61421501e+08 2.92204648e+08 | |
3.26641827e+08 3.65300144e+08 4.09114198e+08 4.58308672e+08 | |
5.13744893e+08 5.76396127e+08 6.46599075e+08 7.25782771e+08] | |
****************** | |
logdetC terms are | |
[ -410.62898964 -672.91913446 -926.22503662 -1169.34164618 | |
-1445.18261905 -1738.08384536 -2079.4620371 -2399.02656433 | |
-2735.89491794 -3080.90524843 -3433.09248454 -3787.30516381 | |
-4142.67275289 -4502.70581932 -4854.37183367 -5211.64589642 | |
-5574.580628 -5931.36044619 -6295.41523156 -6660.63863576 | |
-7019.91756434 -7381.27969271 -7740.57086979 -8102.90872247 | |
-8466.51398412 -8828.15412569 -9191.80550759 -9554.54294936 | |
-9917.99595215 -10281.00471672 -10644.32030792 -11007.88053013 | |
-11371.45867768 -11734.62772477 -12098.20386412 -12461.47921611 | |
-12824.82116055 -13188.76508825 -13552.04849419 -13915.45159908] | |
****************** | |
Npix2pi term is | |
19301.9452637 | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment