Created
November 6, 2024 20:11
-
-
Save duarteocarmo/85435ce9209d1824f68e11b6126ab5c9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import streamlit as st | |
from litellm import completion, stream_chunk_builder | |
from loguru import logger | |
import json | |
import plotly.express as px | |
from enum import Enum | |
MODEL = "gpt-4o-mini" | |
class Roles(Enum): | |
SYSTEM = "system" | |
USER = "user" | |
ASSISTANT = "assistant" | |
TOOL = "tool" | |
class Avatar(Enum): | |
USER = ":material/engineering:" | |
ASSISTANT = ":material/cognition:" | |
TOOL = ":material/construction:" | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
def create_plot( | |
x: list, | |
y: list, | |
plot_type: str = "line", | |
title: str = "Sample Plot", | |
): | |
"""Create a plot with customizable labels""" | |
if plot_type == "line": | |
fig = px.line(x=x, y=y, title=title) | |
elif plot_type == "scatter": | |
fig = px.scatter(x=x, y=y, title=title) | |
elif plot_type == "bar": | |
fig = px.bar(x=x, y=y, title=title) | |
else: | |
raise ValueError("Invalid plot type. Choose from 'line', 'scatter', or 'bar'.") | |
return fig | |
tools = [ | |
{ | |
"type": "function", | |
"function": { | |
"name": "create_plot", | |
"description": "Create a plot to visualize data", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"plot_type": { | |
"type": "string", | |
"enum": ["line", "scatter", "bar"], | |
"description": "The type of plot to create", | |
}, | |
"title": {"type": "string", "description": "The title of the plot"}, | |
"x": { | |
"type": "array", | |
"description": "The x-axis data", | |
"items": {"type": ["number", "string"]}, | |
}, | |
"y": { | |
"type": "array", | |
"description": "The y-axis data", | |
"items": {"type": "number"}, | |
}, | |
}, | |
"required": ["x", "y"], | |
}, | |
}, | |
} | |
] | |
def stream_response(response): | |
"""Stream the LLM response and handle function calls""" | |
chunks = [] | |
plot_data = None | |
full_content = "" | |
for chunk in response: | |
content = chunk.choices[0].delta.content | |
tool_calls = chunk.choices[0].delta.tool_calls | |
if tool_calls: | |
chunks.append(chunk) | |
if content: | |
full_content += content | |
yield content | |
if chunks: | |
with st.status("Creating visualization...", expanded=True) as status: | |
rebuilt_stream = stream_chunk_builder(chunks) | |
tool_call = rebuilt_stream.choices[0].message.tool_calls[0] | |
function_name = tool_call.function.name | |
function_args = json.loads(tool_call.function.arguments) | |
logger.info(f"Function call: {function_name} with args: {function_args}") | |
if function_name == "create_plot": | |
st.write(f"Generating {function_args.get('plot_type', 'line')} plot...") | |
fig = create_plot(**function_args) | |
st.plotly_chart(fig) | |
status.update(label="Visualization created!", state="complete") | |
# Store only the function arguments needed to recreate the plot | |
plot_data = function_args | |
st.session_state.current_response = { | |
"content": full_content, | |
"plot_data": plot_data, | |
} | |
return | |
st.session_state.current_response = {"content": full_content, "plot_data": None} | |
def generate_response(messages): | |
"""Generate a streaming response from the LLM""" | |
logger.info("Generating completion...") | |
stream = completion( | |
model=MODEL, | |
messages=messages, | |
stream=True, | |
tools=tools, | |
tool_choice="auto", | |
temperature=0.7, | |
) | |
response = st.write_stream(stream_response(stream)) | |
logger.info("Generated completion.") | |
return st.session_state.current_response | |
st.set_page_config( | |
page_title="Chat Assistant with Visualization", | |
page_icon="📊", | |
layout="wide", | |
) | |
if len(st.session_state.messages) == 0: | |
st.session_state.messages.append( | |
{ | |
"role": Roles.SYSTEM.value, | |
"content": """You are a helpful assistant that can create visualizations. When users ask for data visualization, use the create_plot function to generate appropriate plots. | |
Make sure to use meaningful axis labels and titles when creating plots. If the data points have specific meanings, use x_labels to label them appropriately.""", | |
} | |
) | |
if st.button("Reset Chat"): | |
st.session_state.messages = [] | |
st.rerun() | |
# Display chat messages | |
for message in st.session_state.messages: | |
if message["role"] != Roles.SYSTEM.value: | |
avatar = ( | |
Avatar.ASSISTANT.value | |
if message["role"] == "assistant" | |
else Avatar.USER.value | |
if message["role"] == "user" | |
else Avatar.TOOL.value | |
) | |
with st.chat_message(message["role"], avatar=avatar): | |
st.markdown(message.get("content", "")) | |
# If there's plot data in the message, recreate and display the plot | |
if "plot_data" in message and message["plot_data"] is not None: | |
fig = create_plot(**message["plot_data"]) | |
st.plotly_chart(fig) | |
if prompt := st.chat_input("Ask me to create a visualization or chat!"): | |
# Add user message to chat | |
st.session_state.messages.append({"role": Roles.USER.value, "content": prompt}) | |
with st.chat_message(Roles.USER.value, avatar=Avatar.USER.value): | |
st.markdown(prompt) | |
with st.chat_message(Roles.ASSISTANT.value, avatar=Avatar.ASSISTANT.value): | |
response = generate_response(st.session_state.messages) | |
# Add assistant response to chat history with the plot data if it exists | |
st.session_state.messages.append( | |
{ | |
"role": Roles.ASSISTANT.value, | |
"content": response["content"], | |
"plot_data": response.get("plot_data"), | |
} | |
) | |
st.markdown( | |
""" | |
<style> | |
.stChatMessage { | |
padding: 1rem; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment