The essential truth about switching LLM providers in LangChain:
# It's just this simple:
from langchain_X import ChatX
model = ChatX(model="model-name")That's it. Everything else in your application stays the same.
# From OpenAI
from langchain_openai import ChatOpenAI
# To Together AI
from langchain_together import ChatTogether
# To Anthropic
from langchain_anthropic import ChatAnthropic
# To any provider X
from langchain_X import ChatX# From OpenAI
model = ChatOpenAI(model="gpt-4")
# To Together AI
model = ChatTogether(model="openai/gpt-oss-20b")
# To Anthropic
model = ChatAnthropic(model="claude-3-opus")# From
OPENAI_API_KEY=sk-...
# To
TOGETHER_API_KEY=tlk-...
# or
ANTHROPIC_API_KEY=sk-ant-...| Provider | Example Model Names |
|---|---|
| OpenAI | gpt-4, gpt-3.5-turbo |
| Together | openai/gpt-oss-20b, meta-llama/Llama-3-70b |
| Anthropic | claude-3-opus, claude-3-sonnet |
gemini-pro, gemini-1.5-pro |
Everything else in your codebase remains untouched:
# All these patterns work identically across providers:
# 1. Basic invocation
response = model.invoke("What is the capital of France?")
# 2. Tool binding
model_with_tools = model.bind_tools(tools)
# 3. Streaming
for chunk in model.stream("Tell me a story"):
print(chunk.content, end="")
# 4. Message formats
messages = [
SystemMessage(content="You are helpful"),
HumanMessage(content="Hello!"),
AIMessage(content="Hi there!")
]
response = model.invoke(messages)
# 5. Chains and graphs
chain = prompt | model | output_parser
graph.add_node("agent", lambda x: model.invoke(x))
# 6. All your business logic
# 7. All your prompts
# 8. All your error handling
# 9. All your tests (mostly)Before:
# app/models.py
from langchain_openai import ChatOpenAI
def get_chat_model(temperature=0):
return ChatOpenAI(
model="gpt-4",
temperature=temperature,
api_key=os.environ.get("OPENAI_API_KEY")
)After:
# app/models.py
from langchain_together import ChatTogether
def get_chat_model(temperature=0):
return ChatTogether(
model="openai/gpt-oss-20b",
temperature=temperature,
together_api_key=os.environ.get("TOGETHER_API_KEY")
)Lines changed: 4 β¨
Before:
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
model="text-embedding-3-small"
)After:
from langchain_together import TogetherEmbeddings
embeddings = TogetherEmbeddings(
model="BAAI/bge-large-en-v1.5"
)Lines changed: 3 β¨
Your Application Code
β
βΌ
ββββββββββββββββββββ
β LangChain β β This interface never changes
β Abstract Layer β
ββββββββββββββββββββ
β
βΌ
ββββββββββββββββββββ
β Provider Adapter β β Only this changes (import + constructor)
β (ChatX class) β
ββββββββββββββββββββ
β
βΌ
ββββββββββββββββββββ
β Provider API β β OpenAI, Together, Anthropic, etc.
ββββββββββββββββββββ
Want to support multiple providers with runtime switching?
# app/models.py
def get_chat_model(provider="together", temperature=0):
"""Factory pattern for multiple providers."""
providers = {
"openai": {
"class": "langchain_openai.ChatOpenAI",
"model": "gpt-4",
"key_env": "OPENAI_API_KEY"
},
"together": {
"class": "langchain_together.ChatTogether",
"model": "openai/gpt-oss-20b",
"key_env": "TOGETHER_API_KEY"
},
"anthropic": {
"class": "langchain_anthropic.ChatAnthropic",
"model": "claude-3-opus",
"key_env": "ANTHROPIC_API_KEY"
}
}
config = providers[provider]
module_name, class_name = config["class"].rsplit(".", 1)
module = __import__(module_name, fromlist=[class_name])
model_class = getattr(module, class_name)
return model_class(
model=config["model"],
temperature=temperature,
api_key=os.environ.get(config["key_env"])
)
# Usage
model = get_chat_model(provider="together") # or "openai" or "anthropic"| Provider | Package | Install Command |
|---|---|---|
| OpenAI | langchain-openai |
pip install langchain-openai |
| Together | langchain-together |
pip install langchain-together |
| Anthropic | langchain-anthropic |
pip install langchain-anthropic |
langchain-google-genai |
pip install langchain-google-genai |
|
| AWS Bedrock | langchain-aws |
pip install langchain-aws |
| Cohere | langchain-cohere |
pip install langchain-cohere |
| HuggingFace | langchain-huggingface |
pip install langchain-huggingface |
When teaching provider switching, emphasize:
"LangChain's power is in the abstraction. You're not rewriting your application for each provider - you're just swapping the adapter."
This means:
- Prototype with OpenAI (familiar, well-documented)
- Deploy with open-source (privacy, cost control)
- Switch anytime based on requirements (performance, cost, compliance)
The switching cost is essentially zero - it's just changing an import and a constructor.
# The entire pattern in 4 lines:
# 1. Import
from langchain_X import ChatX
# 2. Instantiate
model = ChatX(model="model-name", x_api_key="...")
# 3. Use (identical for all providers)
response = model.invoke("Your prompt")
# 4. That's it. Really.Switching LLM providers in LangChain is not a migration - it's a configuration change.
The actual code changes are so minimal that you could:
- A/B test providers in production
- Switch providers based on load
- Use different providers for different tasks
- Failover between providers
All without touching your business logic.
- No Vendor Lock-in: Switch providers in minutes, not months
- Cost Optimization: Use expensive models only when needed
- Privacy Control: Use local/open-source models for sensitive data
- Performance Tuning: Choose the best model for each task
- Future-Proof: New providers just need a new adapter
The pattern from langchain_X import ChatX is your guarantee of flexibility.